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Syllabus

Mathematical Statistics

Objective: This course aims to teach the students about special distributions and

random Process. To prepare students for lifelong learning and successful careers using

their mathematical statistics skills.

Unit-I: Characteristic Function

Properties of characteristic functions-characteristic function and moments - semi invariants

- the characteristic functions of sum of independent random variables determination

of distribution function of the characteristic function - Probability generating function.

Unit-II: Some Probability Distributions

One-point and two-point distributions - The Bernoulli scheme: Binomial distribution

The Poisson scheme: The generalized binomial distribution - The Polya and hypergeometric

distributions - The Poisson distribution - The uniform distribution.

Unit-III: Some Probability Distributions

The normal distribution - The gamma distribution - The beta distribution - The Cauchy

and Laplace distributions - The multinomial distribution - Compound distributions.

Unit-IV: Limit Theorems

Stochastic Convergence - Bernoulli’s law of large numbers - the convergence of a

sequence of distribution functions - The Levy-Cramér theorem - The De Moivre-Laplace

theorem - The Lindeberg-Lévy theorem - The Lapunov theorem.
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Unit-V: Markov Chains

Homogeneous Markov chains - The transition matrix - The Ergodic theorem - Random

variables forming a homogeneous Markov Chain. Stochastic Processes: The Wiener

Process - The Stationary Processes.
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Unit 1

Characteristic Function

Objective

This course aims to teach the students about characteristic function and moments.

Determination of distribution function of the characteristic function of probability

generating function.

1.1 Properties of Characteristic Functions

In this section we investigate the expected value of a certain function of a random

variable and obtain a method of investigation which is extremely useful in further

work on probability theory and its application to statistics. Let X be a random variable

and let F (x) be its distribution function.

Definition 1.1.1 Characteristic Function

The function

ϕ(t) = E
(
eitX

)
(1.1)

where t is a real number and i is the imaginary unit, is called the characteristic function

of the random variable X or of the distribution function F (x).

If X is a random variable of the discrete type with jump points xk (k = 1, 2, . . .) and

P (X = xk) = pk, the characteristic function of X has the form

ϕ(t) = E
(
eitX

)
=
∑
k

pke
itxk (1.2)
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Since |eitxk | = 1 and
∑

k pk = 1, the series on the right-hand side of (1.2) is absolutely

and uniformly convergent. Thus, the characteristic function ϕ(t), as the sum of a

uniformly convergent series of continuous functions, is continuous for every real value

of t.

Example 1.1.2 The random variable X can take on the values x1 = −1 and x2 = +1

with probabilities P (X = −1) = P (X = +1) = 0.5. We shall determine the characteristic

function of this random variable. By (1.2) we have,

ϕ(t) = 0.5e−it + 0.5eit = 0.5(cos t− i sin t) + 0.5(cos t+ i sin t) = cos t (1.3)

IfX is a random variable of the continuous type with density function f(x), its characteristic

function is given by the formula

ϕ(t) = E
(
eitX

)
=

∫ +∞

−∞
f(x)eitxdx

∫ +∞

−∞
f(x)

∣∣eitx∣∣ dx =

∫ +∞

−∞
f(x)dx = 1 (1.4)

Since the integral in (1.4) is absolutely and uniformly convergent; hence ϕ(t) is a continuous

function for every value of t.

Example 1.1.3 The density f(x) is defined as;

f(x) =


0, for x < 0

1, for 0 ⩽ x ⩽ 1

0, for x > 1

(1.5)

This distribution is called uniform or rectangular. Its characteristic function is;

ϕ(t) =

∫ +∞

−∞
f(x)eitxdx =

∫ 1

0

f(x)eitxdx =

[
eitx

it

]1
0

=
eit − 1

it
(1.6)

We now investigate some of the properties of characteristic functions. We have;

ϕ(0) = E
(
e0
)
= E(1) = 1 (1.7)

Since,

|ϕ(t)| =
∣∣E (eitX)∣∣ ⩽ E

(∣∣eitX∣∣) = 1

6



we have;

|ϕ(t)| ⩽ 1 (1.8)

We next have;

ϕ(−t) = E
(
e−itX

)
= E(cos tX − i sin tX) = E(cos tX)− iE(sin tX)

Since,

ϕ(t) = E
(
eitX

)
= E(cos tX + i sin tX) = E(cos tX) + iE(sin tX)

we obtain

ϕ(−t) = ϕ(t) (1.9)

where ϕ(t) denotes the complex number conjugate to ϕ(t). Every characteristic function

must satisfy conditions (1.7), (1.8) and (1.9). These conditions are, however, not sufficient;

thus not every function ϕ(t) satisfying these conditions is a characteristic function of some

random variable. He has shown that a function ϕ(t) which is not identically constant and

which, in a neighborhood of zero, can be represented in the form

ϕ(t) = 1 + 0
(
t2+α

)
with α > 0 cannot be a characteristic function. It follows immediately that neither the

function ϕ(t) = exp (−t4) nor the function ϕ(t) = 1/ (1 + t4) can be a characteristic

function. Further giving necessary and sufficient conditions for a function ϕ(t) to be a

characteristic function.

Theorem 1.1.4 Let the function ϕ(t) defined for −∞ < t < +∞ satisfy condition (1.7).

The function ϕ(t) is the characteristic function of some distribution function if and only if

1. ϕ(t) is continuous.

2. for n = 1, 2, 3, . . . and every real t1, . . . , tn and complex a1, . . . , an we have
n∑

j,k=1

ϕ (tj − tk) aj āk ⩾ 0

Let us recall that a function satisfying second condition of theorem 1.1 is called

positive definite. Another necessary and sufficient condition for the function ϕ(t) to be

a characteristic function.
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Let Us Sum Up

Learners, in this section we have seen that definition of characteristic function and

properties of characteristic function and also given standard theorems.

Check Your Progress

1. A feedback system is stable if the number of zeros (z) of a characteristic equation

in the right half of the s- plane is:

A. Z = 1

B. Z = 0

C. Z = 2

D. None of these

2. The function ϕ(t) is:

A. E
(
eitX

)
B.
(
eitX

)
C. E

(
etX
)

D. E (eit)

1.2 Characteristic Function and Moments

Consider a random variable X and suppose that its l th moment ml = E
(
X l
)

exists.

Suppose that X is a random variable of the discrete type with jump points xk. Then

we can differentiate (1.2) l times with respect to t. In fact, the l th derivative with

respect to t of the expression under the summation sign in (1.2) equals pklixkleitxk . On

the other hand, from the existence of the l th moment there follows the existence of

the absolute l th moment. Since

∑
k

∣∣ilpkxkeieitxk
∣∣ =∑

k

∣∣pkxkl∣∣ = βl

we can differentiate (1.2) l times under the summation sign. Hence we have,

ϕ(l)(t) =
∑
k

pkl
lxk

leitxk = E
(
ilX leitX

)
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Suppose now that f(x) is the density function of a random variableX of the continuous

type. Then we can differentiate (1.4) l times. Indeed, the l th derivative with respect

to t of the expression under the integral sign in (1.4) equals ilxlf(x)eitx. We have

∫ +∞

−∞

∣∣ilxlf(x)eitx∣∣ dx =

∫ +∞

−∞

∣∣xlf(x)∣∣ dx = βl.

By assumption, the absolute moment βl is finite. Thus we can differentiate the formula

for ϕ(t)l times under the integral sign. We obtain

ϕ(l)(t) =

∫ +∞

−∞
ilxlf(x)eitxdx = E

(
ilX leitX

)
(1.10)

Thus we have obtained the same result as for a random variable of the discrete type

ϕ(l)(t) = E
(
ilX leitx

)
(1.11)

Let us compute ϕ(l)(0) from relation (1.11). We have

ϕ(l)(0) = ilE
(
X l
)
= ilml (1.12)

Hence

ml =
ϕ(l)(0)

il
(1.13)

Thus we have proved the following theorem.

Theorem 1.2.1 If the lth moment ml of a random variable exists, it is expressed by

formula (1.13), where ϕ(l)(0) is the lth derivative of the characteristic function ϕ(t) of

this random variable at t = 0.

Example 1.2.2 Suppose that the random variable X has a Poisson distribution, that is,

it can take on the values xk = k, where k is any non-negative integer, and the probability

function is given by the formula

P (X = k) =
λk

k!
e−λ (1.14)

where λ is a positive constant. We shall find the characteristic function of X. From (1.2)
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we obtain

ϕ(t) =
∞∑
k=0

eitk
λk

k!
e−λ = e−λ

∞∑
k=0

(λeit)
k

k!
= exp(−λ) exp

(
λeit
)
= exp

[
λ
(
eit − 1

)]
.

(1.15)

Furthermore,

ϕ′(t) = λi exp(it) exp
[
λ
(
eit − 1

)]
(1.16)

From (1.13) we obtain

m1 =
ϕ′(0)

i
=
λi

i
= λ (1.17)

Similarly,

ϕ′′(t) = λi2 exp(it) exp
[
λ
(
eit − 1

)]
[λ exp(it) + 1] (1.18)

Hence

m2 =
ϕ′′(0)

i2
=
i2λ · (λ+ 1)

i2
= λ(λ+ 1) (1.19)

Thus the central moment of the second order is

µ2 = λ(λ+ 1)− λ2 = λ (4.2.9)

In a similar manner we can obtain the moments of higher orders.

Example 1.2.3 We shall find the characteristic function and the moments of a normal

distribution. We have

f(x) =
1√
2π
e−x2/2 (1.20)

Hence

ϕ(t) =
1√
2π

∫ +∞

−∞
exp(itx) exp

(
−x

2

2

)
dx (1.21)

=
1√
2π

∫ +∞

−∞
exp

[
−(x− it)2

2

]
exp

(
−t

2

2

)
dx = exp

(
−t

2

2

)
(1.22)

Since ϕ′(t) = −t exp (−t2/2), we have

m1 =
ϕ′(0)

i
= 0 (1.22 a)

Next, we have ϕ′′(t) = (t2 − 1) exp (−t2/2); hence

m2 =
ϕ′′(0)

i2
= 1 (1.23)
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We have already obtained the same values m1 and m2 in examples. The reader can verify

that all the odd order moments equal zero and that the even order moments are expressed

by the formula

m2l = 1 · 3 · 5 · . . . · (2l − 1) (1.24)

We notice that the converse of theorem is not true. An example of a random variable,

whose expectation does not exist and whose characteristic function is differentiable at

t = 0. But if the characteristic function ϕ(t) has a finite derivative of an even order 2k at

t′ = 0, then the moment of order 2k of the corresponding random variable exists. As we

know, in this case all the moments of orders smaller than 2k also exist.

Let Us Sum Up

Learners, in this section we have seen that the characteristic function and moments.

Also given theorem and examples.

Check Your Progress

1. Which of the following statements is true about the relationship between the

characteristic function and the moment generating function?

A. They are identical and can be used interchangeably.

B. The characteristic function is defined for all real t, while the MGF is defined only

for t in a neighborhood around zero.

C. The MGF is defined for all real t, while the characteristic function is defined only

for t in a neighborhood around zero.

D. The characteristic function and the MGF are not related in any way.

2. The moments of a random variable X can be obtained from the characteristic

function ϕX(t) by:

A. Differentiating ϕX(t) with respect to t and then evaluating at t = 0.

B. Integrating ϕX(t) with respect to t and then evaluating at t = 0.

C. Differentiating ϕX(t) with respect to t and then evaluating at t = 1.

D. Integrating ϕX(t) with respect to t and then evaluating at t = 1.
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1.3 Semi-Invariants

Now consider the characteristic function of a linear transformation of the random

variable X. First consider the translation

Y = X + b

Denoting by ϕ1(t) the characteristic function of the random variable Y , we obtain

ϕ1(t) = E
(
eitY
)
= E

(
eit(X+b)

)
= E

(
eitX

)
eitb = eitbϕ(t) (1.25)

We see that when the random variable is translated by a constant b, its characteristic

function is multiplied by the factor eitb. Now let

Y = aX

We have,

ϕ1(t) = E
(
eitY

Y
)
= E

(
eitaX

)
= ϕ(at) (1.26)

Thus, the characteristic function of the random variable aX equals the characteristic

function of the random variable X at the point at. In particular, if a = −1, we obtain

ϕ1(t) = ϕ(−t) = ϕ(t)

Now let us consider the transformation

Y = aX + b

Denoting the characteristic functions of the random variables X and Y by ϕ(t) and

ϕ1(t) respectively, we obtain from equations (1.25) and (1.26)

ϕ1(t) = eibtϕ(at) (1.27)

In particular, let

Y =
X −m1

σ
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where m1 and σ denote respectively the expected value and the standard deviation of

X. Then

ϕ1(t) = exp

(
−m1it

σ

)
ϕ

(
t

σ

)
(1.28)

Sometimes it is conveniel. to deal with a set of parameters other than the set of

moments. We obtain such parameters by considering the function

ψ(t) = log ϕ(t) (1.29)

where ϕ(t) is the characteristic function of the random variable under consideration.

Let us formally expand the function ϕ(t) in a power series in a neighborhood of t = 0,

ϕ(t) = 1 +
∞∑
s=1

ms

s!
(it)s (1.30)

Let us denote by z the series on the right-hand side of (1.30) and let us formally

expand the function ψ(t) into a power series

ψ(t) = log ϕ(t) = log(1 + z) =
z

1
− z2

2
+
z3

3
− . . . =

∞∑
s=1

κs
s!
(it)s (1.31)

From (1.30) and (1.31) we obtain the formal equation

ϕ(t) = 1+
∞∑
s=1

ms

s!
(it)s = exp

[
∞∑
s=1

κs
s!
(it)s

]
= 1+

∞∑
s=1

κs
s!
(it)s+

1

2!

[
∞∑
s=1

κs
s!
(it)s

]2
+
1

3!

[
∞∑
s=1

κs
s!
(it)s

]3
+. . .

(1.32)

Definition 1.3.1 The coefficients κs in (1.32) are called semi-invariants. To express the

semi-invariants in terms of the moments or the moments in terms of the semi-invariants,

we compare successively the coefficients of (it)s for particular values of s in equation

(1.32). In this way we obtain

κ1 = m1

κ2 = m2 −m2
1 = σ2

κ3 = m3 − 3m1m2 + 2m3
1 (1.32 a)

κ4 = m4 − 3m2
2 − 4m1m3 + 12m2

1m2 − 6m4
1

13



and also

m1 = κ1

m2 = κ2 + κ21 (1.32 b)

m3 = κ3 + 3κ1κ2 + κ31

m4 = κ4 + 3κ22 + 4κ1κ3 + 6κ21κ2 + κ41

The semi-invariants can also be expressed in terms of the central moments,

κ1 = m1

κ2 = µ2 = σ2 (1.32 c)

κ3 = µ3

κ4 = µ4 − 3µ2
2

where ϕ(t) is the characteristic function of the random variable under consideration.

Let us formally expand the function ϕ(t) in a power series in a neighborhood of t = 0,

ϕ(t) = 1 +
∞∑
s=1

ms

s!
(it)s (1.33)

Let us denote by z the series on the right-hand side of (1.3.3) and let us formally

expand the function ψ(t) into a power series

ψ(t) = log ϕ(t) = log(1 + z) =
z

1
− z2

2
+
z3

3
− . . . =

∞∑
s=1

κs
s!
(it)s (1.34)

From (1.33) and (1.34) we obtain the formal equation

ϕ(t) = 1 +
∞∑
s=1

ms

s!
(it)s = exp

[
∞∑
s=1

κs
s!
(it)s

]
(1.34 a)

= 1 +
∞∑
s=1

κs
s!
(it)s +

1

2!

[
∞∑
s=1

κs
s!
(it)s

]2
+

1

3!

[
∞∑
s=1

κs
s!
(it)s

]3
+ . . .

Definition 1.3.2 The coefficients κs in (1.34) are called semi-invariants. To express the

14



semi-invariants in terms of the moments or the moments in terms of the semi-invariants,

we compare successively the coefficients of (it)s for particular values of s in equation (1.34

a). In this way we obtain

κ1 = m1

κ2 = m2 −m2
1 = σ2

κ3 = m3 − 3m1m2 + 2m3
1 (1.34 b)

κ4 = m4 − 3m2
2 − 4m1m3 + 12m2

1m2 − 6m4
1

and also

m1 = κ1

m2 = κ2 + κ21 (1.34 c)

m3 = κ3 + 3κ1κ2 + κ31

m4 = κ4 + 3κ22 + 4κ1κ3 + 6κ21κ2 + κ41

The semi-invariants can also be expressed in terms of the central moments,

κ1 = m1

κ2 = µ2 = σ2 (1.34 d)

κ3 = µ3

κ4 = µ4 − 3µ2
2

Let Us Sum Up

Learners, in this section we have seen that definitions of semi-invariants of characteristic

functions and also given theorems and applications.
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Check Your Progress

1. A semi-invariant of a random variable X is defined as:

A. The expectation of Xk for some integer k.

B. The expectation of etX for some real number t.

C. The characteristic function E[eitX ].
D. The moment generating function E[etX ].
2. The semi-invariants of a random variable X are related to:

A. The higher moments of X.

B.The Fourier transform of the probability density function of X.

C. The cumulants of X.

D. The characteristic function of X.

1.4 Characteristic Function and Independent Random

Variables

From (1.34) and (1.34 a) it follows that if the moment of the l th order exists, all the

semi-invariants of order not greater than l also exist. The name semi-invariants comes

from the fact that under a translation, that is, under a transformation Y = X + b,

all semi-invariants except κ1 remain unchanged. If we denote by ϕ(t) and ϕ1(t) the

characteristic functions of the random variables X and Y , respectively, we have, by

equation (1.34 b)

log ϕ1(t) = bit+ log ϕ(t) (1.35)

Thus the translation changes only the coefficient of the term with it to the first power

in the expansion (1.35); hence it changes only the semiinvariant of the first order.

Example 1.4.1 We shall compute the semi-invariants of the Poisson distribution discussed.

The characteristic function of the Poisson distribution is

ϕ(t) = exp
[
λ
(
eit − 1

)]
(1.36)
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Hence we obtain

ψ(t) = log ϕ(t) = λ
(
eit − 1

)
= λ

(
∞∑
k=0

(it)k

k!
− 1

)
= λ

∞∑
k=1

(it)k

k!
(1.37)

From formula (1.37), we obtain

κk = λ (k = 1, 2, . . .) (1.38)

Using the formulas for the relations between semi-invariants and moments we can obtain

from formula (1.38) the moments of arbitrary order of the Poisson distribution. Let

X and Y be two independent random variables. From the considerations of random

variables eitX and eitY are also independent. We shall find the characteristic function of

the sum

Z = X + Y

Let ϕ(t), ϕ1(t) and ϕ2(t) denote respectively the characteristic functions of the random

variables Z,X, and Y . We have

ϕ(t) = E
(
eitZ
)
= E

(
eit(X+Y )

)
= E

(
eitXeitY

)
(1.39)

By the independence of the random variables eitX and eitY .

ϕ(t) = E
(
eilX

)
E
(
eitY
)
= ϕ1(t)ϕ2(t) (1.40)

This result can be generalized to an arbitrary finite number of independent random

variables.

Theorem 1.4.2 The characteristic function of the sum of an arbitrary finite number of

independent random variables equals the product of their characteristic functions. Thus,

if Z is the sum of n independent random variables,

Z = X1 +X2 + . . .+Xn (1.41)

and ϕ(t), ϕ1(t), ϕ2(t), . . . , ϕn(t) denote the characteristic functions of Z,X1, X2, . . . , Xn,

respectively, then

ϕ(t) = ϕ1(t)ϕ2(t) . . . ϕn(t) (1.42)
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Example 1.4.3 Suppose two independent random variables X1 and X2 have Poisson

distributions

P (X1 = r) =
λr1
r!
e−λ1 , P (X2 = r) =

λr2
r!
e−λ2(r = 0, 1, . . .) (1.43)

Consider the random variable

Z = X1 −X2 (1.44)

We shall determine the characteristic function and the semi-invariants of Z. By equation

(1.44) the characteristic functions ϕ1(t) and ϕ2(t) of X1 and X2 have the form

ϕ1(t) = exp
[
λ1
(
eit − 1

)]
, ϕ2(t) = exp

[
λ2
(
eit − 1

)]
(1.45)

By (1.45), the characteristic function of −X2 is

ϕ2(−t) = exp
[
λ2
(
e−it − 1

)]
(1.46)

Since X1 and −X2 are independent, we obtain by (1.46) for the characteristic function of

the random variable Z

ϕ(t) = exp
[
λ1
(
eit − 1

)]
exp

[
λ2
(
e−it − 1

)]
= exp

(
λ1e

it + λ2e
−it − λ1 − λ2

)
Expanding the exponents eit and e−it into power series, we obtain

ϕ(t) = exp

[
(λ1 − λ2) (it) + (λ1 + λ2)

(it)2

2!
+ (λ1 − λ2)

(it)3

3!
,+ . . .

]
ψ(t) = log ϕ(t) = (λ1 − λ2)

(it)

1!
+ (λ1 + λ2)

(it)2

2!
+ (λ1 − λ2)

(it)3

3!
+ . . .

From (1.46) it follows that all the semi-invariants of odd order of Z equal λ1 − λ2, and

all the semi-invariants of even order equal λ1 + λ2. The expected value and the variance

of Z can be obtained from (1.46),

m1 = κ1 = λ1 − λ2, σ2 = κ2 = λ1 + λ2

We notice that the converse of theorem 1.1.13 is not true; that is, the characteristic

function of the sum of dependent random variables may equal the product of their characteristic
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functions.

Example 1.4.4 The joint distribution of the random variable (X, Y ) is given by the

density

f(x, y) =


1
4
[1 + xy (x2 − y2)] for |x| ⩽ 1 and |y| ⩽ 1

0 for all other points.

We first show that the random variablesX and Y are dependent. The marginal distributions

in the domains |x| ⩽ 1 and |y| ⩽ 1 are, respectively, of the form

f1(x) =

∫ +1

−1

1

4

[
1 + xy

(
x2 − y2

)]
dy =

1

4

(
y +

1

2
x3y2 − 1

4
xy4
)+1

−1

=
1

2

f2(y) =

∫ +1

−1

1

4

[
1 + xy

(
x2 − y2

)]
dx =

1

4

(
x+

1

4
x4y − 1

2
x2y3

)+1

−1

=
1

2

We then obtain f1(x)f2(y) =
1
4
̸= f(x, y); hence the random variables X and Y are not

independent. We now find the density of the sum Z = X + Y . Then,

f3(z) =

∫ +∞

−∞
f(x, z − x)dx

The end points of the intervals of x values, for which f(x, z − x) > 0, depend on z. To

find them, observe that by introducing the variables x, z instead of x, y we transform the

square |x| ⩽ 1, |y| ⩽ 1 into the domain defined by the inequalities;

|x| ⩽ 1, x− 1 ⩽ z ⩽ x+ 1 (1.47)

The shaded area represents the domain in the (x, y) plane defined by the inequalities |x| ⩽
1, |y| ⩽ 1, and the corresponding domain in the (x, z) plane. Let us write inequalities

(1.47) in the form

|x| ⩽ 1, z − 1 ⩽ x ⩽ z + 1

Furthermore, we notice that for z ⩽ 0 we have

z − 1 ⩽ −1, z + 1 ⩽ 1

Thus for z ⩽ 0 we integrate the function f(x, z − x) from -1 to z + 1, and for z > 0 from

z − 1 to 1.
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After simple computations we obtain;

f3(z) =



∫ z+1

−1
1
4
(1 + 3z2x2 − 2zx3 − z3x) dx = 1

4
(2 + z) for − 2 ⩽ z ⩽ 0,∫ 1

z−1
1
4
(1 + 3z2x2 − 2zx3 − z3x) dx = 1

4
(2− z) for 0 < z ⩽ 2,

0 for |z| > 2.

A distribution such as that of Z is called a triangular distribution. The graph of the

function f3(z) is represented in the figure. We now determine the characteristic functions

of X, Y and Z = X + Y . We have

ϕ1(t) =
1

2

∫ +1

−1

eitxdx =
1

2

[
eitx

it

]+1

−1

=
eit − e−it

2it
=

sin t

t

Similarly,

ϕ2(t) =
sin t

t

Since the variable z takes on the values from the interval [−2,+2], we find

ϕ3(t) =
1

4

∫ 0

−2

(2 + z)eitzdz +
1

4

∫ 2

0

(2− z)eitzdz =
1

4

(
2− e2it − e−2it

t2

)
=

1

2t2

(
1− e2it + e−2it

2

)
=

1

2t2
(1− cos 2t) =

(
sin t

t

)2

It follows that the equality ϕ3(t) = ϕ1(t)ϕ2(t) holds; nevertheless X and Y are dependent.

Let Us Sum Up

Learners, in this section we have seen that the defintions characteristic function of the

sum of independent random variables and also given theorems and applications.

Check Your Progress

1. Let X and Y be independent random variables with characteristic functions ϕX(t)

and ϕY (t), respectively. The characteristic function of the sum Z = X + Y is:

A. ϕX(t) · ϕY (t)

B. ϕX(t) + ϕY (t)

C. ϕX(t) · ϕY (−t)
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D. ϕX(t) + ϕY (−t)
2. If X1, X2, . . . , Xn are independent random variables with characteristic functions

ϕXi
(t), the characteristic function of their sum Sn = X1 +X2 + · · ·+Xn is:

A. ϕX1(t) · ϕX2(t) · · · · · ϕXn(t)

B. ϕX1(t) + ϕX2(t) + · · ·+ ϕXn(t)

C. ϕX1(t) · ϕX2(t) · · · · · ϕXn(t)

D. ϕX1(t) · ϕX2(t) · · ·ϕXn(t)

1.5 Distribution Function and Characteristic Function

We know that uniquely determines the characteristic function of a given distribution

function. We shall prove the theorem of Lévy that the converse is also true: from the

characteristic function we can uniquely determine the distribution function. Let F (x)

and ϕ(t) denote respectively the distribution function and the characteristic function

of the random variable X. If a + h and a − h(h > 0) are continuity points of the

distribution function F (x),

F (a+ h)− F (a− h) = lim
T→∞

1

π

∫ T

−T

sinht

t
e−itaϕ(t)dt (1.48)

Before proving it we shall show how to apply theorem. Since the numbers a and h are

arbitrary, formula (1.48) gives the difference F (x2)− F (x1) for arbitrary continuity

points x1 and x2. By the relation

F (x2)− F (x1) = P (x1 ⩽ X < x2)

if we know the characteristic function ϕ(t), we obtain from theorem the probability

that the value of X belongs to an arbitrary. Let x = x2 be a given continuity point and

let x1 → −∞, where the passage to the limit is performed over the set of continuity

points. Here the sequence of differences F (x)−F (x1) is determined by the characteristic

function and is convergent to F (x); thus the distribution function F (x) is determined

at every continuity point; hence it is determined everywhere. We now give the proof

of theorem.

Proof: We give the proof only for a random variable of the continuous type with
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density function f(x). Denote

J =
1

π

∫ +T

−T

sinht

t
e−itaϕ(t)dt (1.49)

From the definition of the characteristic function we obtain

J =
1

π

∫ +T

−T

[∫ +∞

−∞

sinht

t
e−itaeitxf(x)dx

]
dt

=
1

π

∫ T

−T

[∫ +∞

−∞

sinht

t
eit(x−a)f(x)dx

]
dt

We notice that we can interchange the order of integration since the limits of integration

with respect to t are finite and the integral is absolutely convergent with respect to x.

Thus
∫ +∞
−∞

∣∣ sinht
t
eit(x−a)

∣∣ f(x)dx =
∫ +∞
−∞

∣∣ sinht
t

∣∣ f(x)dx ⩽ h
∫ +∞
−∞ f(x)dx = h. We obtain

J =
1

π

∫ +∞

−∞

[∫ T

−T

sinht

t
eit(x−a)f(x)dt

]
dx

=
1

π

∫ +∞

−∞

[∫ T

−T

sinht

t
{cos[(x− a)t] + i sin[(x− a)t]}f(x)dt

]
dx

=
2

π

∫ +∞

−∞

{∫ T

0

sinht

t
cos[(x− a)t]f(x)dt

}
dx

By the formula

sinA cosB =
1

2
[sin(A+B) + sin(A−B)]

and the substitution A = ht, B = xt− at, we obtain

J =

∫ +∞

−∞

{
1

π

∫ T

0

sin[(x− a+ h)t]

t
dt

=

∫ +∞

−∞
g(x, T )f(x)dx

where g(x, T ) denotes the expression in the braces. It is known from mathematical

analysis that the integral
∫ T

0
(sinx/x)dx is bounded for all T > 0 and converges to 1

2
π

as T → +∞. It follows that the expression |g(x, T )| is bounded and

lim
T→∞

1

π

∫ T

0

sinαt

t
dt =


1

2
for α > 0

−1

2
for α < 0
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Here the convergence is uniform with respect to α where |α| = |x − a ± h| > δ > 0.

From this fact we obtain

lim
T→∞

g(x, T ) =



0 for x < a− h

1
2

for x = a− h

1 for a− h < x < a+ h

1
2

for x = a+ h

0 for x > a+ h

It follows that in computing limT→∞ J we can pass to the limit under the integral sign

on the right-hand side. Hence we obtain

lim
T→∞

J =

∫ +∞

−∞
lim
T→∞

g(x, T )f(x)dx

=

∫ a+h

a−h

f(x)dx = F (a+ h)− F (a− h)

From above equation and we obtained. Thus the theorem is proved for a random

variable of the continuous type. For a random variable of the discrete type the proof

is similar; it is only necessary to replace the integrals by series. If the characteristic

function ϕ(t) is absolutely integrable over the interval (−∞,+∞), then the corresponding

density function f(x) can be determined 1 by ϕ(t). In fact, from the absolute integrability

of the function ϕ(t) it follows that the improper integral (above eqaution) exists.

Dividing both sides of equation by 2h, we then have

F (x+ h)− F (x− h)

2h
=

1

2π

∫ +∞

−∞

sinht

ht
e−itxϕ(t)dt (1.50)

where x + h and x − h are continuity points of F (x). When h → 0, the expression

under the integral sign tends to e−itxϕ(t). Moreover, the expression under the integral

sign is, in absolute value, not greater than |ϕ(t)|, which by assumption is integrable. It

follows that we can pass to the limit with h → 0 under the integral sign in expression

(1.50). Then we obtain

lim
h→0

F (x+ h)− F (x− h)

2h
=

1

2π

∫ +∞

−∞
eitxϕ(t)dt.
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Since the right-hand side of this equation is a continuous function of x, we obtain

F ′(x) = f(x) =
1

2π

∫ +∞

−∞
e−itxϕ(t)dt (1.51)

From the absolute and uniform convergence of the last integral it follows that the

density F ′(x) exists and is a continuous function. Thus formula (1.50) allows us to

determine the density f(x) from the characteristic function ϕ(t), under the assumption

that ϕ(t) is absolutely integrable.

Example 1.5.1 The characteristic function of the random variable X is given by the

formula

ϕ(t) = exp

(
−t

2

2

)
(1.52)

From the above equation, we obtain

f(x) =
1

2π

∫ +∞

−∞
exp(−itx) exp

(
−t

2

2

)
dt

=
1

2π

∫ +∞

−∞
exp

[
−(t+ ix)2

2

]
exp

(ix)2

2
dt

=
1√
2π

exp

(
−x

2

2

)
1√
2π

∫ +∞

−∞
exp

[
−(t+ ix)2

2

]
dt =

1√
2π

exp

(
−x

2

2

)

If the random variable X is of the discrete type and can take on only integer values, then

its probability function can easily be obtained from the characteristic function For every

integer k, let

pk = P (X = k)

where, of course, not all pk must be positive. We have

ϕ(t) =
∞∑

k=−∞

pke
ikt

Let k′ be a fixed integer. Then we have

e−itk′ϕ(t) =
+∞∑

k=−∞
k ̸=k′

e−it(k′−k)pk + pk′

Integrating both sides of this equation from −π to +π and using the fact that for every
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k ̸= k′, we have ∫ π

−π

e−it(k′−k)dt = 0

we obtain, replacing k′ by k,

pk =
1

2π

∫ π

−π

e−itkϕ(t)dt (1.53)

Example 1.5.2 Let us find the density function of the random variableX, whose characteristic

function is

ϕ1(t) =

 1− |t| for |t| ⩽ 1

0 for |t| > 1
(4.5.8)

It is obvious that the function ϕ1(t) is absolutely integrable over the interval ( −∞ <

t < +∞ ). From formula, we obtain

f(x) =
1

2π

∫ +∞

−∞
e−itxϕ1(t)dt =

1

2π

∫ 0

−1

(1 + t)e−itxdt+
1

2π

∫ 1

0

(1− t)e−itxdt∫ 0

−1

(1 + t)e−itxdt =

[
e−itx

−ix
(1 + t)

]0
−1

− 1

−ix

∫ 0

−1

e−itxdt

= − 1

ix
+

1

ix

[
e−itx

−ix

]0
−1

= − 1

ix
− 1

(ix)2
(
1− eix

)
∫ 1

0

(1− t)e−itxdt =

[
e−itx

−ix
(1− t)

]1
0

+
1

−ix

∫ 1

0

e−itxdt

=
1

ix
− 1

ix

[
e−itx

−ix

]1
0

=
1

ix
+

1

(ix)2
(
e−ix − 1

)
We then have

f(x) =
1

2πx2
(
2− eix − e−ix

)
=

1

πx2

(
1− eix + e−ix

2

)
=

1− cosx

πx2
(1.54)

Let us now consider the random variable Y of the discrete type, with the probability
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function defined by the formulas

P (Y = 0) =
1

2
(1.54 a)

P [Y = (2k − 1)π] =
2

(2k − 1)2π2
(k = 0,±1,±2, . . .)

The characteristic function of this random variable is

ϕ2(t) =
1

2
+

∞∑
k=−∞

2

(2k − 1)2π2
eit(2k−1)π

=
1

2
+

2

π2

+∞∑
k=−∞

cos(2k − 1)tπ + i sin(2k − 1)tπ

(2k − 1)2
(1.54 b)

=
1

2
+

4

π2

∞∑
k=1

cos(2k − 1)tπ

(2k − 1)2

We shall show that for |t| ⩽ 1 we have

ϕ1(t) = ϕ2(t)

Let Us Sum Up

Learners, in this section we have seen that determination of the distribution function

by the characteristic function and also given theorems and applications.

Check Your Progress

1.To recover the distribution function FX(x) from its characteristic function ϕX(t), one

must use:

A. The fourier transform of ϕX(t).

B. The inverse Fourier transform of ϕX(t).

C. The Laplace transform of ϕX(t).

D. The moment generating function of ϕX(t).

2. If the characteristic function ϕX(t) of a random variable X is given, the distribution

function FX(x) can be computed by:

A. Differentiating ϕX(t) with respect to t and evaluating at t = 0.
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B. Integrating ϕX(t) with respect to t and evaluating at t = 0.

C. Using the inverse Fourier transform of ϕX(t).

D. Computing E[eitX ] for various values of t.

1.6 Characteristic Function of Multidimensional Random

Vectors

Expanding the function ψ(t) = |t| in the interval |t| ⩽ 1 in a Fourier series, we have

ψ(t) =
a0
2

+
∞∑
n=1

an cosnπt

We compute the coefficients of this expansion from the formulas

a0
2

=

∫ 1

0

tdt =
1

2

an = 2

∫ 1

0

t cosnπtdt =

[
2t sinnπt

nπ

]1
0

− 2

nπ

∫ 1

0

sinnπtdt

= − 2

nπ

[
− cosnπt

nπ

]1
0

= 2
cosnπ − 1

π2n2

For even n we have an = 0, and for odd n, that is, for n = 2k − 1, we have

a2k−1 = − 4

(2k − 1)2π2

Finally we obtain

ψ(t) = |t| = 1

2
− 4

π2

∞∑
k=1

cos(2k − 1)πt

(2k − 1)2
(1.55)

From above formulas and we have ϕ2(t) = 1 − |t| = ϕ1(t), in spite of the fact that

ϕ1(t) and ϕ2(t) are the characteristic functions of two different distributions. We

observe that for |t| > 1 the characteristic functions ϕ1(t) and ϕ2(t) are not equal.

In fact, from the definition we then have ϕ1(t) ≡ 0, whereas the function ϕ2(t) is not

identically zero since the values taken by this function in the interval |t| ⩽ 1 repeat

periodically. The notion of the characteristic function of a one-dimensional random
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variable can be generalized to a random variable with an arbitrary finite number of

dimensions. We restrict ourselves to two-dimensional random variables. Let (X, Y )

be a two-dimensional random variable and let F (x, y) be its distribution function. Let

t and u be two arbitrary real numbers. The characteristic function of the random

variable (X, Y ) or of the distribution function F (x, y) is defined by the formula

ϕ(t, u) = E
[
ei(tX+uY )

]
(1.56)

Example 1.6.1 The two-dimensional random variable can take on four pairs of values:

(+1,+1), (+1,−1), (−1,+1), and (−1,−1) with the probabilities

P (X = 1, Y = 1) =
1

3
,P (Ẋ = 1, Y = −1) =

1

3

P (X = −1, Y = 1) =
1

6
,P (X = −1, Y = −1) =

1

6

The reader can verify that X and Y are independent. For the characteristic function of

the random variable ( X, Y ), we obtain from the equation ϕ(t, u) = E
(
ei(tX+uY )

)
=

1
3
ei(t+u) + 1

3
ei(t−u) + 1

6
ei(−t+u) + 1

6
ei(−t−u)

=
1

3
eit
(
eiu + e−iu

)
+

1

6
e−it

(
eiu + e−iu

)
=

1

6

(
eiu + e−iu

) (
2eit + e−it

)
=

1

3
cosu(3 cos t+ i sin t)

We shall investigate some of the properties of characteristic functions of multidimensional

random variables. We have

ϕ(0, 0) = E
(
ei(0X+0Y )

)
= 1|ϕ(t, u)| =

∣∣E (ei(tX+uY )
)∣∣ ⩽ E

(∣∣ei(tX+uY )
∣∣) = 1 (1.57)

Hence

|ϕ(t, u)| ⩽ 1 (1.58)

ϕ(−t,−u) = E
(
e−i(tX+uY )

)
= ϕ(t, u)

It can be shown that, as in the one-dimensional case, if all the moments of order k of a

multidimensional random variable exist, then the derivatives

∂kϕ(t, u)

∂tk−l∂ul
for l = 0, 1, 2, . . . , k (1.59)
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exist and can be obtained from the formula

∂kϕ(t, u)

∂tk−l∂ul
= ikE

(
Xk−lY lei(tX+uY )

)
(1.60)

From the above equation, we see that the momentmk−l,l can be obtained from the formula

mk−l,l = E
(
Xk−lY l

)
=

1

ik

[
∂kϕ(t, u)

∂tk−l∂ul

]
t=0
u=0

(1.61)

For the moments of the first and second order we obtain the expressions m10 =
1
i

[
∂ϕ(t,u)

∂t

]
t=0
u=0

, m01 =

1
i

[
∂ϕ(t,u)

∂u

]
t=0
u=0

, m20 = 1
i2

[
∂2ϕ(t,u)

∂t2

]
t=0
u=0

,m11 = 1
i2

[
∂2ϕ(t,u)
∂t∂u

]
t=0
u=0

,m02 = 1
i2

[
∂2ϕ(t,u)

∂u2

]
t=0
u=0

. We

obtain the characteristic functions of the marginal distributions of the random variables

X and Y from formula of equation by putting u = 0 or t = 0, respectively. Thus

ϕ(t, 0) = E
(
eitX

)
= ϕ1(t) (1.62)

This is simply the characteristic function of X. Similarly,

ϕ(0, u) = E
(
eitY
)
= ϕ2(u) (1.63)

is the characteristic function of Y . We shall now give without proof the generalization of

theorem to two-dimensional random vectors. The proof is similar to that for a one-dimensional

random variable.

Theorem 1.6.2 Let ϕ(t, u) be the characteristic function of the random variable (X, Y ).

If the rectangle (a− h ⩽ X < a+ h, b− g ⩽ Y < b+ g ) is a continuity rectangle, then

P (a− h ⩽ X < a+ h, b− g ⩽ Y < b+ g)

= lim
T→∞

1

π2

∫ +T

−T

∫ +T

−T

sinht

t

sin gu

u
exp[−i(at+ bu)]ϕ(t, u)dtdu

Thus, if we know ϕ(t, u), formula (1.63) allows us to determine the probability

P (x1 ⩽ X < x2, y1 ⩽ Y < y2) (1.64)

for an arbitrary continuity rectangle. However, the probabilities (4.6.12) for continuity
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rectangles completely determine the probability distribution in the plane (x, y).

Theorem 1.6.3 Let F (x, y), F1(x), F2(y), ϕ(t, u), ϕ1(t), and ϕ2(u) denote the distribution

functions and the characteristic functions of the random variables (X, Y ), X and Y ,

respectively. The random variables X and Y are then independent if and only if the

equation

ϕ(t, u) = ϕ1(t)ϕ2(u) (1.65)

holds for all real t and u.

Proof: Suppose that X and Y are independent. From theorem we have, for any real t

and u

ϕ(t, u) = E
(
ei(tX+uY )

)
= E

(
eitXeiuY

)
= E

(
eitX

)
E
(
eiuY

)
= ϕ1(t)ϕ2(u)

We obtain the equation

P (X1 ⩽ X < x2, y1 ⩽ Y < y2) = P (x1 ⩽ X < x2)P (y1 ⩽ Y < y2)

which is valid for arbitrary continuity rectangles. From the above equation we obtain, for

arbitrary x and y

F (x, y) = F1(x)F2(y)

Thus the theorem is proved. The following Cramer-Wold theorem is useful in the theory

of random vectors.

Theorem 1.6.4 Prove that distribution function F (x, y) of a two-dimensional random

variables (X, Y ) is uniquely determined by the class of all one-dimensional distribution

functions of tX + uY , where t and u run over all possible real values.

Proof: Suppose we are given for all real t and u the characteristic functions ϕz(v) of

Z = tX+uY , ϕz(v) = E{exp[iv(tX+uY )]} = E{exp[i(vtX+ vuY )]}. Putting v = 1,

we obtain for the right-hand side of the expression

E{exp[i(tX + uY )]}

which is the characteristic function ϕ(t, u) of the distribution function F (x, y). According

to the function ϕ(t, u) uniquely determines F (x, y). Thus the theorem is proved. Let us

write

P (tX + uY < z) = P (X cosα + Y sinα < w)
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where cosα = t√
t2+u2 , sinα = u√

t2+u2 , w = z√
t2+u2 (0 ⩽ α ⩽ 2π). The Cramer-Wold

theorem can now be formulated in the following way: The distribution function F (x, y)

is uniquely determined by the distribution functions of the projections of (X, Y ) on all

straight lines passing through the origin. With probability 1, (X, Y ) satisfies the inequality

X2 + Y 2 ⩽ R2 <∞

then the distribution function F (x, y) is uniquely determined by the class of distribution

functions of X cosα1 + Y sinα, where α runs over an arbitrary countable set of different

values from the interval [0, 2π].

Let Us Sum Up

Learners, in this section we have seen that he characteristic function of multidimensional

random vectors and applications.

Check Your Progress

1. The characteristic function of a multidimensional random vector X = (X1, X2, . . . , Xd)
T

is defined as:

A. E[eitTX]

B. E[etTX]

C. E[eitX]
D. E[etX]
2. If X and Y are independent d-dimensional random vectors with characteristic

functions ϕX(t) and ϕY(t), respectively, the characteristic function of X+Y is:

A. ϕX(t) · ϕY(t)

B. ϕX(t) + ϕY(t)

C. ϕX(t) · ϕY(−t)

D. ϕX(t) + ϕY(−t)
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1.7 Probability-Generating Functions

When investigating random variables which take on only the integers k = 0, 1, 2, . . .

it is simpler to deal with probability generating functions than with characteristic

functions. Let X be a random variable and let

pk = P (X = k) (k = 0, 1, 2, . . .)

where
∑

k pk = 1.

Definition 1.7.1 The function defined by the formula

ψ(s) =
∑
k

pks
k (1.66)

where −1 ⩽ s ⩽ 1, is called the probability generating function of X. We notice

that ψ(1) =
∑

k pk = 1. Hence the series on the right-hand side of above eqaution

is absolutely and uniformly convergent in the interval |s| ⩽ 1. Thus the generating

function is continuous. It determines the probability function uniquely, since ψ(s) can

be represented in a unique way as a power series of the form the above eqaution.

Example 1.7.2 The random variable X has a binomial distribution, that is,

pk =

(
n

k

)
pk(1− p)n−k (k = 0, 1, . . . , n)

Therefore

ψ(s) =
n∑

k=0

(
n

k

)
(ps)k(1− p)n−k = (ps+ q)n

Example 1.7.3 The random variable X has a Poisson distribution, that is

pk = e−λλ
k

k!
(k = 0, 1, 2, . . .)

Therefore

ψ(s) =
∞∑
k=0

e−λ (λs)
k

k!
= e−λeλs = e−λ(1−s) (1.67)

The moments of the random variable X can be determined by the derivatives at the point

1 of the generating function. Let us for example, determine the moments of the first and
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second order. We have
ψ′(s) =

∑
k

kpks
k−1

ψ′′(s) =
∑
k

k(k − 1)pks
k−2

1.8 Let Us Sum Up

Learners, in this section we have seen that probability-generating functions and applications.

Check Your Progress

1. IfX is a discrete random variable with probability mass function pX(x), the probability

generating function GX(t) is given by:

A. GX(t) =
∑

x e
txpX(x)

B. GX(t) =
∑

x t
xpX(x)

C. GX(t) =
∑

x pX(x)e
tx

D. GX(t) =
∑

x e
itxpX(x)

2. Which of the following properties is true about the probability generating function

GX(t) of a discrete random variable X?

A. GX(t) is always a real-valued function.

B. GX(1) = 1.

C. GX(t) is always a polynomial.

D. GX(t) can be used to compute the mean and variance of X directly.

Glossary

1. The ϕ(t) = E
(
eitX

)
is characteristic function of t.

2. The function f(x) is density function of x.

3. The function MX(t) is moment generating function of t.

4. The µr is rth order moment.
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1.9 Unit Summary

The first unit content on properties of characteristic functions, characteristic function

and moments, semi-invariants, the characteristic functions of sum of independent

random variables, determination of distribution function of the characteristic function

and probability generating function.

Self-Assessment Questions

Short Answers: (5 Marks)

1. Prove that the function φ(t) = exp(−|t|r) with r > 2 is not the characteristic

function of any random variable.

2. Prove that the characteristic function of a random variable X is real if and only

if X has a symmetric distribution about 0.

3. Let (φ(t) be the characteristic function of the random variable X. Prove that, if

X is of the continuous type, then lim|t|→∞ (φ(t) = 0.

4. Let (φ(t) be the characteristic function of the random variable X then prove that

if X is of the discrete type, then lim|t|→∞ sup (φ(t) = 1.

5. Prove that if (φ(t) is the characteristic function of a random variable then so is

|(φ(t)|2.

Long Answers: (8 Marks)

1. Let (φ(t) be the characteristic function of the random variable X. Prove that

(a) if X is of the continuous type, then lim|t|→∞ (φ(t) = O

(b) if X is of the Discrete type, then lim|t|→∞ sup (φ(t)=1.

2. Show that the characteristic functions (φ1(t) , (φ2(t), and (φ3(t)may satisfy the

relation (φ1(t)(φ2(t) = (φ1(t)(φ3(t)

in spite of the fact that (φ2(t), and (φ3(t)are not identically equal.
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3. Find the characteristic function and the moments of a normal distribution

f(x) =
1√
2π
e−x2/2.

4. The characteristic function of the random variable X is given by:

ϕ(t) = exp

(
−t

2

2

)
.

Exercises

1. Find the characteristic functions of the random variables whose densities are (a)

f(x) =

 0 for |x| ⩾ a > 0

a−1
a2

for |x| < a

(b)

f(x) =
2 sin2(ax/2)

πax2

2. Prove that the function

ϕ(t) = exp (−|t|r)

with r > 2 is not the characteristic function of any random variable.

3. Let ϕ(t) be the characteristic function of the random variable X. Prove that (a)

if X is of the continuous type, then lim|t|→∞ ϕ(t) = 0, (b) if X is of the discrete

type, then lim|t|→∞ sup |ϕ(t)| = 1.

4. Prove that (a) if ϕ(t) is the characteristic function of a random variable, then so

is |ϕ(t)|2.

5. Prove that the characteristic function of a random variable X is real if and only

if X has a symmetric distribution about 0.

Answers to Check Your Progress

Section (Modulo) 1.1

1. B. Z = 0
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2. A. E
(
eitX

)
Section (Modulo) 1.2

1. B. The characteristic function is defined for all real t, while the MGF is defined

only for t in a neighborhood around zero.

2. A. Differentiating ϕX(t) with respect to t and then evaluating at t = 0.

Section (Modulo) 1.3

1. A. The expectation of Xk for some integer k.

2. D. The characteristic function of X.

Section (Modulo) 1.4

1. A.ϕX(t) · ϕY (t)

2. D. ϕX1(t) · ϕX2(t) · · ·ϕXn(t)

Section (Modulo) 1.5

1. B. The inverse Fourier transform of ϕX(t).

2. C. Using the inverse Fourier transform of ϕX(t).

Section (Modulo) 1.6

1. A.E[eitTX]

2. A.ϕX(t) · ϕY(t)

Section (Modulo) 1.7

1. B. GX(t) =
∑

x t
xpX(x)

2. B. GX(1) = 1.
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Unit 2

Probability Discrete Distributions

Objective

This course aims to teach the students about some discrete probability distributions

with one-point and two-point distributions. The Binomial distribution, Poisson and

generalized binomial distribution and Polya and hyper-geometric distributions. Also

Poisson distribution and uniform distribution.

2.1 One-Point and Two-Point Distributions

In this section we investigate to more closely some probability distributions of special

importance in either theory or practice. We begin with the one-point distribution.

Definition 2.1.1 The random variable X has a one-point distribution if there exists a

point x0 such that

P (X = x0) = 1 (2.1)

We also say that the probability mass is concentrated at one point. It is clear that a

random variable with a one-point distribution has a degenerate distribution. Formula

(2.1) gives us the probability function. The distribution function of this probability
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distribution is given by the formula

F (x) =


0 for x ⩽ x0

1 for x > x0

(2.2)

We obtain the characteristic function of this distribution from the formula

ϕ(t) = eitx0 (2.3)

We know that see that m1 = x0 and, more generally, we have mk = x0
k for every k.

Hence we obtain

D2(X) = m2 −m2
1 = x20 − x20 = 0

Conversely, if the variance of a random variable X equals zero, then X has a one-point

distribution. To prove this suppose that

D2(X) = E[X − E(X)]2 = 0 (2.4)

Let Us Sum Up

Learners, in this section we have seen that definitions of one point and two point

distributions.

Check Your Progress

1. Which of the following is a property of the binomial distribution?

A. The number of trials is infinite

B. The probability of success is constant across trials

C. The trials are not independent

D. The distribution is continuous

2. What is the mean of a normal distribution with parameters µ and σ2?

A. σ

B. σ2

C. µ
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D. µ+ σ2

2.2 Bernoulli Scheme of Binomial Distribution

Since the expression [X − E(X)]2 is non-negative, equation (2.4) is satisfied only if;

P [X − E(X) = 0] = 1, or P [X = E(X)] = 1

From (2.1) we find that the random variable X has a one-point distribution.

Definition 2.2.1 The random variable X has a two-point distribution if there exist two

values x1 and x2, such that;

P (X = x1) = p, P (X = x2) = 1− p (0 < p < 1) (2.5)

We often put x1 = 1 and x2 = 0. In place of (2.5) we then have

P (X = 1) = p, P (X = 0) = 1− p (0 < p < 1) (2.6)

This distribution is called the zero-one distribution. The characteristic function of

distribution (2.6) is given by the formula;

ϕ(t) = peit·1 + (1− p)eit·0 = peit + 1− p = 1 + p
(
eit − 1

)
(2.7)

We obtain for every k

mk = p (2.8)

Hence

D2(X) = m2 −m2
1 = p− p2 = p(1− p) (2.9)

Then,

µ3 = m3 − 3m1m2 + 2m3
1 = p− 3p2 + 2p3 = p(1− p)(1− 2p)

γ =
µ3

µ
3/2
2

=
p(1− p)(1− 2p)

p3/2(1− p)3/2
=

1− 2p√
p(1− p)

We see that if p = 0.5 then γ = 0 since here X has a symmetric distribution. From

the following scheme of trials, called the Bernoulli scheme, we obtain a random

variableX with binomial distribution. We perform n random experiments. Through an

39



experiment we can obtain the event A, which we designate a success, with probability

p, or the complementary A, which we designate a failure, with probability q = 1 − p.

The results of the n experiments are independent. As a result of n random experiments,

event A may occur k times ( k = 0, 1, 2, . . . , n). The number of occurrences of A is a

random variable X that can take on the values k = 0, 1, . . . , n, where the equality

X = k means that in n experiments the event A has occurred k times. It is that X has

the binomial probability function given by the formula

P (X = k) =

(
n

k

)
pk(1− p)n−k (2.10)

The distribution function of the binomial distribution is given by the formula

F (x) = P (X < x) =
∑
k<x

(
n

k

)
pk(1− p)n−k

where the summation extends over all non-negative integers less than x. We notice

that for n = 1 the binomial distribution is reduced to the zero-one distribution. For

n ⩾ 2 the binomial distribution can also be obtained from the zero-one distribution

as follows. Let Xr(r = 1, 2, . . . , n) be independent random variables with the same

zero-one distribution. The probability function of every Xr has the form

P (Xr = 1) = p, P (Xr = 0) = 1− p

Consider the random variable equal to the sum of the Xr,

X = X1 +X2 + . . .+Xn (2.11)

The random variable X can take on the values k = 0, 1, 2, . . . , n. The event X = k

occurs if and only if k of the n random variables Xr take on the value one and n− k of

them take on the value zero. For a given k this may happen in
(
n
k

)
different ways. By

the independence of the random variables Xr we obtain formulas (2.10). From (2.7)

and (2.2), for the characteristic function ϕ(t) of X, we obtain

ϕ(t) =
[
1 + p

(
eit − 1

)]n (2.12)
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We obtain the moments of this distribution. In particular,

m1 = np, m2 = np+ n(n− 1)p2 (2.13)

µ2 = np(1− p), µ3 = np(1− p)(1− 2p)

We then have

γ =
1− 2p√
np(1− p)

(2.14)

We have already obtained the formula for µ2 by another method.

Example 2.2.2 The above table gives the binomial distributions for the values p1 =

0.1, p2 = 0.3, and p3 = 0.5 for n = 20. The first column gives the values k = 0, 1, . . . , 20

and the remaining columns the probabilities that the random variable takes on the value

k. These probabilities are given with a maximum error of 0.00005 .

Table

P (X = k) P (X = k)

k p1 = 0.1 p2 = 0.3 p3 = 0.5 k p1 = 0.1 p2 = 0.3 p3 = 0.5

0 0.1216 0.0008 - 11 - 0.0120 0.1602

1 0.2702 0.0068 - 12 - 0.0039 0.1201

2 0.2852 0.0278 0.0002 13 - 0.0010 0.0739

3 0.1901 0.0716 0.0011 14 - 0.0002 0.0370

4 0.0898 0.1304 0.0046 15 - - 0.0148

5 0.0319 0.1789 0.0148 16 - - 0.0046

6 0.0089 0.1916 0.0370 17 - - 0.0011

7 0.0020 0.1643 0.0739 18 - - 0.0002

8 0.0004 0.1144 0.1201 19 - - -

9 0.0001 0.0654 0.1602 20 - - -

10 - 0.0308 0.1762

We know that p is to 0.5 , the more symmetric is the distribution and the greater its

dispersion. We might have expected these results from comparing the values of the
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parameters µ2 and γ for the considered values of p with n = 20. These values, computed

from (2.4) and (2.5) are given in below table.

p1 = 0.1 p2 = 0.3 p3 = 0.5

σ =
√
µ2 1.34 2.05 2.24

γ 0.597 0.195 0.000

Let X and Y be two independent random variables with binomial distributions and let

the characteristic functions of X and Y be, respectively

ϕ1(t) =
[
1 + p

(
eit − 1

)]n1

ϕ2(t) =
[
1 + p

(
eit − 1

)]n2

Consider the random variable

Z = X + Y

Because of the independence of X and Y , the characteristic function of Z is;

ϕ(t) =
[
1 + p

(
eit − 1

)]n1+n2 (2.6)

As we see from (2.6), Z has the binomial distribution with n = n1 + n2. This is the

addition theorem for the binomial distribution. In applications we often deal with the

distribution of

Y =
X

n

where the random variable X has the binomial distribution. The random variable Y can

take on the values
k

n
= 0,

1

n
, . . . ,

n− 1

n
, 1

Since the probability that Y = k/n is equal to the probability that X = k, the probability

function of Y is given by (2.1)

P

(
Y =

k

n

)
= P (X = k) =

(
n

k

)
pk(1− p)n−k
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Let Us Sum Up

Learners, in this section we have seen that the definition of Bernoulli scheme of the

binomial distribution and example.

Check Your Progress

1. What are the parameters of a binomial distribution?

A. Mean and variance

B. Number of trials and probability of success

C. Mean and standard deviation

D. Rate and shape

2. What is the probability mass function (pmf) of the binomial distribution:

A. P (X = k) = n!
k!(n−k)!

pk(1− p)n−k

B. P (X = k) = n!
k!(n−k)!

(1− p)kpn−k

C. P (X = k) = n!
k!(n−k)!

pn−k(1− p)k

D. P (X = k) = n!
k!(n−k)!

pk(1− p)k

2.3 Poisson Scheme of Generalized Binomial Distribution

We know that the characteristic function of Y is;

ϕ(t) =
[
1 + p

(
eit/n − 1

)]n
(2.7)

From the characteristic function we obtain the moments. In particular,

m1 = p, m2 =
p

n
+
n− 1

n
p2, µ2 =

p(1− p)

n
(2.8)

Poisson considered the following scheme of experiments. We perform n random trials.

As a result of the k th trial (k = 1, 2, . . . , n), the event A (or a success) may occur

with probability pk; thus the probability of the complementary event, qk = 1 − pk.

The results of the n experiments are independent. Unlike Bernoulli’s scheme, here

the probabilities of the occurrence of event A in individual trials are not necessarily

equal. The number of occurrences of A in n trials is a random variable. We say that
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this random variable has a generalized binomial distribution. The random variable Z

with the generalized binomial distribution can also be represented as the sum

Z = Z1 + . . .+ Zn (2.9)

where the random variables Zk(k = 1, 2, . . . , n) are independent and have the zero-one

distribution with the probability functions;

P (Zk = 1) = pk, P (Zk = 0) = 1− pk

The formula for the probability function of the random variable Z is not as simple

as that for the probability function of the binomial distribution. The probability that

Z = r can be found by the summation of the probabilities of each possible combination

of r 1’s and (n− r)0’s.

Example 2.3.1 We have three lots of oranges. The fraction of rotten oranges in the first

lot is p1 = 0.02, in the second, p2 = 0.05, and in the third, p3 = 0.01. We choose one

orange at random from each lot. We assign the number one to the appearance of a good

orange, and the number zero to the appearance of a rotten one. Here Z1, Z2, and Z3 are

random variables which take on the value 0 or 1, according to whether we have obtained

a rotten or a good orange from the first, second, or third lot. These random variables are

independent, and we have;

P (Z1 = 1) = 0.98, P (Z2 = 1) = 0.95, P (Z3 = 1) = 0.99

Consider the random variable Z = Z1 + Z2 + Z3. This random variable can take on the

values r = 0, 1, 2, or 3.

Let Us Sum Up

Learners, in this section we have seen that the defintion of Poisson scheme and the

generalized Binomial distributions with examples.
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Check Your Progress

1. If a binomial random variable X has parameters n = 10 and p = 0.3, what is the

mean of the distribution?

A. 10× 0.3 = 3

B. 10× 0.7 = 7

C. 0.3× 0.7 = 0.21

D. 0.3× 10 = 30

2. What is the variance of a binomial distribution with parameters n and p?

A. np(1− p)

B. np

C. n2p(1− p)

D. n(1− p)

2.4 Polya and Hypergeometric Distributions

As a result of the independence of Z1, Z2, Z3 we obtain the probabilities

P (Z = 0) =P (Z1 = 0)P (Z2 = 0)P (Z3 = 0) = 0.00001

P (Z = 1) =P (Z1 = 0)P (Z2 = 0)P (Z3 = 1)

+ P (Z1 = 0)P (Z2 = 1)P (Z3 = 0)

+ P (Z1 = 1)P (Z2 = 0)P (Z3 = 0) = 0.00167

P (Z = 2) =P (Z1 = 0)P (Z2 = 1)P (Z3 = 1)

+ P (Z1 = 1)P (Z2 = 0)P (Z3 = 1)

+ P (Z1 = 1)P (Z2 = 1)P (Z3 = 0) = 0.07663

P (Z = 3) =P (Z1 = 1)P (Z2 = 1)P (Z3 = 1) = 0.92169

then

P (Z = 0) + P (Z = 1) + P (Z = 2) + P (Z = 3) = 1
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The characteristic function of Z, defined by (2.1) to have a generalized binomial

distribution, can be obtained from (1.7) using the independence of the Zk, namely

ϕ(t) =
n∏

k=1

[
1 + pk

(
eit − 1

)]
(2.10)

We compute the first two moments of Z. We have

m1 =
n∑

k=1

pk, m2 =
n∑

k=1

pk +
n∑

l=1

n∑
k=1

plpk, µ2 =
n∑

k=1

pk (1− pk) (2.11)

As we see, formulas (2.4) for m1,m2, and µ2 are particular cases of the corresponding

formulas (2.3).

Example 2.4.1 We compute the expected value and the standard deviation of the random

variable Z of example. We have

E(Z) = m1 = (1− p1) + (1− p2) + (1− p3) = 2.92

σ =
√
µ2 =

√
0.0196 + 0.0475 + 0.0099 =

√
0.0770 = 0.28

In practice we often deal with distributions which can be reduced to a scheme called the

Polya scheme. Imagine that we have b white and c black balls in an urn. Let b + c =

N . We draw one ball at random, and before drawing the next ball we replace the one we

have drawn and add s balls of the same color. This procedure is repeated n times. Denote

by X the random variable which takes on the value k(k = 0, 1, . . . , n) if as a result of n

drawings we draw a white ball k times. We shall find the probability function of X. We

notice that the probability of the successive drawing of k white balls is;

b(b+ s) . . . [b+ (k − 1)s]

N(N + s) . . . [N + (k − 1)s]

Similarly, the probability of drawing k white balls in turn and then n− k black balls is;

b(b+ s) . . . [b+ (k − 1)s]c(c+ s) . . . [c+ (n− k − 1)s]

N(N + s) . . . [N + (n− 1)s]

We notice that the last expression also gives the probability of drawing k white and n− k

black balls in any given order. The order of drawing affects only the order of the terms in
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the numerator of this expression. Since k white and n− k black balls can be drawn in
(
n
k

)
different ways, we have (2.1) P (X = k)

=

(
n

k

)
b(b+ s) . . . [b+ (k − 1)s]c(c+ s) . . . [c+ (n− k − 1)s]

N(N + s) . . . [N + (n− 1)s]

Definition 2.4.2 The random variable X with the probability distribution given by (2.1)

has a Polya distribution. Denote

Np = b,Nq = c,Nα = s

As we see, p and q are the probabilities of drawing a white and a black ball, respectively,

on the first drawing. Formula (2.1) takes the form (2.2) is;

P (X = k) =

(
n

k

)
p(p+ α) . . . [p+ (k − 1)α]q(q + α) . . . [q + (n− k − 1)α]

1(1 + α) . . . [1 + (n− 1)α]

It is obvious that
∑n

k=0

(
n
k

)p(p+α)...[p+(k−1)α]q(q+α)...[q+(n−k−1)α]
1(1+α)...[1+(n−1)α]

= 1. We shall compute the

first and second moments of X. The first moment is given by the formula

E(X) =
n∑

k=0

kP (X = k) = pn
n∑

k=1

(
n− 1

k − 1

)
× (p+ α) . . . [p+ (k − 1)α]q(q + α) . . . [q + (n− k − 1)α]

(1 + α) . . . [1 + (n− 1)α]

Putting l = k − 1, we obtain

E(X) = pn
n−1∑
l=0

(
n− 1

l

)
(p+ α) . . . (p+ lα)q(q + α) . . . [q + (n− l − 2)α]

(1 + α) . . . [1 + (n− 1)α]
(2.12)

It is easy to verify that the term under the summation sign in the last formula represents

the probability of obtaining l white and n− l−1 black balls in n−1 drawings according

to a Pólya scheme where at the beginning the urn contains N + s balls, including b+ s

white and c black ones. From (2.3) it follows that the sum on the right-hand side of

(2.4) equals 1; hence

E(X) = np (2.13)
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For the second moment we obtain

E
(
X2
)
=

n∑
k=0

k2P (X = k) = np
n∑

k=1

k

(
n− 1

k − 1

)
× (p+ α) . . . [p+ (k − 1)α]q(q + α) . . . [q + (n− k − 1)α]

(1 + α) . . . [1 + (n− 1)α]

Putting l = k − 1 we obtain E (X2)

=np
n−1∑
l=0

(l + 1)

(
n− 1

l

)
(p+ α) . . . (p+ lα)q(q + α) . . . [q + (n− l − 2)α]

(1 + α) . . . [1 + (n− 1)α]

=np

(
n−1∑
l=0

l

(
n− 1

l

)
(p+ α) . . . (p+ lα)q(q + α) . . . [q + (n− l − 2)α]

(1 + α) . . . [1 + (n− 1)α]

+
n−1∑
l=0

(
n− 1

l

)
(p+ α) . . . (p+ lα)q(q + α) . . . [q + (n− l − 2)α]

(1 + α) . . . [1 + (n− 1)α]

}

=np(A+B).

After some simple transformations we have

A =
(p+ α)(n− 1)

1 + α

n−2∑
r=0

(
n− 2

r

)
(2.14)

×(p+ 2α) . . . [p+ (r + 1)α]q . . . [q + (n− r − 3)α]

(1 + 2α) . . . [1 + (n− 1)α]

Expression B is identical with the sum in (2.14); hence B = 1. We notice further that

the term under the summation sign in (2.6) is the probability of drawing r white and

n − r − 2 black balls in n − 2 drawings according to a Polya scheme where the urn

contains N + 2s balls at the beginning, among which b+ 2s are white and c are black.

Thus we obtain from (2.3)

A =
(p+ α)(n− 1)

1 + α

Finally,

E
(
X2
)
= np

[
(p+ α)(n− 1)

1 + α
+ 1

]
= np

np+ q + nα

1 + α
(2.15)

Using (2.5), we obtain

D2(X) = npq
1 + nα

1 + α
(2.16)
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The Polya scheme can be applied to such phenomena as infectious diseases where the

realization of an event (appearance of the disease) causes an increase in the probability

of being infected with the disease. In the Polya scheme s may also be negative. Since

the inequalities

b+ (k − 1)s ⩾ 1 and c+ (n− k − 1)s ⩾ 1

must hold, k must then satisfy the double inequality

max

(
0, n− 1 +

c− 1

s

)
⩽ k ⩽ min

(
n,

1− b

s
+ 1

)

Let N, b, and c tend to infinity so that

p =
b

N
= constant. (2.17)

Here, of course, q = 1 − p is also constant. Suppose that limα = 0. N → ∞ this

condition will be satisfied, in particular, if s is constant and N tends to infinity. It

follows from (2.1) and (2.2) that

lim
N→∞

P (X = k) =

(
n

k

)
pkqn−k (2.18)

We have proved the following theorem.

Theorem 2.4.3 If for N = 1, 2, . . . equality (2.10) is satisfied and lim α = 0, then the

probability function of the random variable X with the N → ∞ Polya distribution tends

to the probability function of the binomial distribution as N → ∞. A particular case

of the Polya distribution is the hypergeometric distribution. In this distribution s = −1,

which simply means that we do not replace the ball which has been drawn before drawing

the next ball. The probability function of the hypergeometric distribution can be obtained

from (2.2) by putting α = −1/N . We obtain for k satisfying the double inequality

max(0, n−Nq) ⩽ k ⩽ min(n,Np) P (X = k)

=

(
n

k

)
Np(Np− 1) . . . (Np− k + 1)Nq . . . (Nq − n+ k + 1)

N(N − 1) . . . (N − n+ 1)

=

(
Np
k

)(
Nq
n−k

)(
N
n

)
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The expected value E(X) equals np, and formula (2.9) for the variance takes the form

D2(X) =
N − n

N − .1
npq (2.20)

The hypergeometric distribution is often applied in statistical quality control of mass

production. For example, let the lot under control consist of b good items, and N − b = c

defective items. Here a good item plays the role of a white ball; a defective item, the role

of a black ball; and the lot under control, the role of the urn. From the lot we draw n

items at random to determine their quality; usually the chosen items are not returned to

the lot. If the numbers b and c are known, by using the formulas obtained previously we

can compute the probability that among n chosen items there are k good ones.

Let Us Sum Up

Learners, in this section we have seen that the definition of Polya and Hypergeometric

Distributions and also given theorems and examples.

Check Your Progress

1. What is the expected value of a hypergeometric distribution with parameters N , K,

and n?

A. nK
N

B. N−nK
N

C. n
N

D. K
N

2. What is the variance of a hypergeometric distribution with parameters N , K, and

n?

A. nK(N−K)(N−n)
N2(N−1)

B. nK(N−K)
N

C. K(N−K)(N−n)
N2

D. nK
N
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2.5 Poisson Distribution

If b and c áre unknown, and the investigation of the quality of some number of items

may serve to estimate these numbers. In example 2.1 we considered a random variable

X with a Poisson distribution. Let us summarize the most important properties of such

a random variable. Such a random variable can take on the values r = 0, 1, 2, . . . Its

probability function is given by the formula

P (X = r) =
λr

r!
e−λ (2.21)

where λ is a positive constant. According to (2.6) its characteristic function has the

form

ϕ(t) = eλ(e
it−1)

From (2.7) to (2.9), we obtain

m1 = λ, m2 = λ(λ+ 1), µ2 = λ

The probability function (2.6) can be obtained as the limit of a sequence of probability

functions of the binomial distribution. We shall prove Poisson’s theorem.

Theorem 2.5.1 Let the random variable Xn have a binomial distribution defined by the

formula

P (Xn = r) =
n!

r!(n− r)!
pr(1− p)n−r (2.22)

where r takes on the values 0, 1, 2, . . . , n. If for n = 1, 2, . . . the relation

p =
λ

n
(2.23)

holds, 1 where λ > 0 is a constant, then

lim
n→∞

P (Xn = r) =
λr

r!
e−λ (2.24)

Since the expected value of Xn is np, condition (2.24) means that as n increases the

expected value of Xn remains constant. 1 The assertion of this theorem will still hold if

relation (2.24) is replaced by

lim
n→∞

np = λ
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Proof: Let us transform formula (2.24) in the following way:

P (X.n = r) =
n!

r!(n− r)!

(
λ

n

)r (
1− λ

n

)n−r

=
λr

r!

(
1− λ

n

)n
n(n− 1) . . . (n− r + 1)

nr
· 1(

1− λ
n

)r
=
λr

r!

(
1− λ

n

)n 1 ·
(
1− 1

n

)
. . .
(
1− r−1

n

)(
1− λ

n

)r
Using the fact that

lim
n→∞

(
1− λ

n

)n

= e−λ and lim
n→∞

1 ·
(
1− 1

n

)
we obtain formula (2.24).

One of the binomial distribution with n = 5 and p = 0.3, hence λ = np = 1.5, and one

of the Poisson distribution with the same expected value λ = 1.5. And two such graphs

for n = 10 and p = 0.15; hence again λ = 1.5. For larger values of n, for instance,

n = 100, the graphs of the binomial and Poisson distributions will almost coincide. Often

the Poisson distribution is interpreted as a distribution of a random variable which can

take on many different values (the number n is large) but with small probabilities (the

probability p = λ/n is small). That is why the Poisson distribution is sometimes called

the law of small numbers. However, as is shown by the next two examples, this name is

not justified. Bortkiewicz, who has investigated the Poisson distribution, has given some

empirical examples of random events to which this distribution can be applied.

Example 2.5.2 Computed the number of soldiers in ten cavalry corps who died within

a period of twenty years from a kick by a horse. We consider as a random variable the

number r(r = 0, 1, 2, . . .) of men in one corps killed in one year by a kick from a horse.

The number of observations was 10 × 20 = 200, that is, the observations concerned ten

army corps over a period of twenty years.

Table

The following frequencies of appearance of values of r. The frequencies of death from

a kick by a Horse.
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r 0 1 2 3 4

Frequency 0.545 0.325 0.110 0.015 0.005

Probability 0.544 0.331 0.101 0.021 0.003

From the central row of this table we compute the mean

E(X) = 0 · 0.545 + 1 · 0.325 + 2 · 0.110 + 3 · 0.015 + 4 · 0.005 = 0.61

Let us compute the corresponding probabilities P (X = r) for the Poisson distribution

with λ = 0.61. Usually we find these probabilities from Poisson distribution tables, but

here we compute them directly. We have

P (X = 0) = e−0.61 = 0.544

P (X = 1) = 0.61e−0.61 = 0.331

P (X = 2) =
0.612e−0.61

2!
= 0.101

P (X = 3) =
0.613e−0.61

3!
= 0.021

P (X = 4) =
0.614e−0.61

4!
= 0.003

These values are presented in the lower row of above table. As we see, these probabilities

differ but little from the corresponding frequencies. In many physical and technical

problems we deal with distributions close to the Poisson distribution. Here we give an

example from physics.

Example 2.5.3 We present here the results of the famous experiments. They observed the

numbers of α particles emitted by a radioactive substance in n = 2608 periods of 7.5sec

each. These data are presented in table. In this table ni denotes the number of periods in

which the number of emitted particles was equal to i. The average number λ of particles

emitted during a period of 7.5sec is

λ =

∑
nii

n
= 3.87

and

pi =
3.87i

i!
e−3.87
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Table

The reader will notice the striking closeness of the second and third columns in above

table

i ni npi

0 57 54.399

1 203 210.523

2 383 407.361

3 525 525.496

4 532 508.418

5 408 393.515

6 273 253.817

7 139 140.325

8 45 67.882

9 27 29.189

10 16 17.075

2608 2, 608.000

Just as for the binomial distribution we can prove the addition theorem for independent

random variables with Poisson distributions. Let the independent random variables X1

and X2 have the respective Poisson distributions

P (X1 = r) =
λr1
r!
e−λ1 , P (X2 = r) =

λr2
r!
e−λ2 (r = 0, 1, 2, . . .)

Consider the random variable

X = X1 +X2

According to (2.6) the characteristic functions of X1 and X2 are

ϕ1(t) = exp
[
λ1
(
eit − 1

)]
, ϕ2(t) = exp

[
λ2
(
eit − 1

)]
By the independence of X1 and X2 the characteristic function of X has the form

ϕ(t) = exp
[
(λ1 + λ2)

(
eit − 1

)]
(2.25)
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Formula (2.25) represents the characteristic function of a random variable with the

Poisson distribution having the expected value λ1 + λ2. This proves the addition

theorem for independent random variables with Poisson distributions. Raikov has

proved that the converse theorem is also true: if X1 and X2 are independent and

X = X1 +X2 has a Poisson distribution, then each of the random variables X1 and X2

has a Poisson distribution.

Let Us Sum Up

Learners, in this section we have seen that the definition of Poisson distribution distribution

with Illustrations.

Check Your Progress

1. What is the parameter of the Poisson distribution?

A. Mean

B. Variance

C. Rate or average number of occurrences

D. Standard deviation

2. Which of the following scenarios is best modeled by a Poisson distribution?

A. Number of emails received in an hour

B. Height of individuals in a population

C. The time between arrivals of buses

D. The number of successes in a series of trials

2.6 Uniform Distribution

Raikov’s theorem is true for an arbitrary finite number of independent random variables

X1, . . . , Xn. The simplest example of a random variable of the continuous type is a

random variable with the uniform distribution. In above example we considered a

particular case of the uniform distribution. The general definition is as follows.

Definition 2.6.1 The random variable X has a uniform, or rectangular distribution if

its density function f(x) is given by the formula
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f(x) =


1
2h

for a− h ⩽ x ⩽ a+ h, where a and h > 0 are constants

0 otherwise
(2.25 a)

The distribution function F (x) of this random variable is given by the formula

F (x) =


0 for x < a− h,

1
2h

∫ x

a−h
dx = x−(a−h)

2h
for a− h ⩽ x ⩽ a+ h,

1 for x > a+ h.

The characteristic function of

X is

ϕ(t) =
1

2h

∫ a+h

a−h

eitxdx =
1

2h

(
eitx

it

)a+h

a−h

(2.25.b)

=
1

2h
· e

it(a+h) − eit(a−h)

it
= eita

sin th

th

We obtain the moments directly from the formula

mk =
1

2h

∫ a+h

a−h

xkdx =
1

2h
· (a+ h)k+1 − (a− h)k+1

k + 1
(2.26)

In particular,

m1 = a, m2 =
1

3

(
3a2 + h2

)
Hence

µ2 = m2 −m2
1 =

1

3
h2 (2.27)

By a linear transformation of X we can obtain a random variable with a uniform

distribution in the interval [0, 1]. To do this we write

Y =
X − (a− h)

2h

The density of Y , which we shall denote by f1(y), is given by the following formula:

f1(y) =


1 in the interval [0, 1]

0 otherwise
(2.28)
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This is the rectangular distribution which we considered in above example. The

density of this distribution. In statistical problems we often deal with rectangular

distributions. It is worthwhile to mention that if the distribution function F (x) of

the random variable X is continuous, then the random variable Y = F (X) has the

uniform distribution given by (2.6). In fact, to every infinite interval −∞ < X ⩽ x

of values of the random variable X there corresponds the set of values of the random

variable Y contained in the interval 0 ⩽ Y ⩽ y = F (x). On the other hand, by the

assumption that the distribution function F (x) is continuous, to every y(0 ⩽ y ⩽ 1)

there corresponds at least one x satisfying the relation

y = F (x) = P (X < x) (2.29)

However, transformation (2.7) may not be one-to-one since the inverse image F−1(y)

of some values of y may be an interval in which the function F (x) is constant. Here,

for a given y we can take for x = F−1(y) any of the values of x from the interval in

which the distribution function F (x) is constant, and for every such value of x we shall

have F [F−1(y)] = y; in particular we can take as x = F−4(y) the least x for which this

equality holds. If we denote by F1(y) the distribution function of the random variable

Y , we obtain

F1(y) = P (Y < y) = P [F (X) < y]

=


0 for y ⩽ 0

P [X < F−1(y)] = F [F−1(y)] = y for 0 < y < 1,

1 for y ⩾ 1

2.7 Let Us Sum Up

Learners, in this section we have seen that definition of uniform distribution and its

pdf .
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Check Your Progress

1. What is the mean of a continuous uniform distribution over the interval [a, b]?

A. a+b
2

B. a−b
2

C. a+b
b−a

D. b−a
2

2. For a discrete uniform distribution where X can take integer values from 1 to 10,

what is the probability of any specific value?

A. 1
10

B. 1
5

C. 1
20

D. 1
15

Glossary

1. The function F (x) is the distribution function of X.

2. The n and p is the parameters of Binomial distribution.

3. The µ is mean of normal distribution.

4. The k is number of observations.

5. The Z is random variable with generalized binomial distribution.

2.8 Unit Summary

The second unit content on one-point and two-point distributions, the Bernoulli, Binomial

distribution and Poisson distribution. Also the generalized binomial distribution, Polya,

hyper-geometric distributions, Poisson distribution and uniform distribution.
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Self-Assessment Questions

Short Answers: (5 Marks)

1. Prove the equality
k∑

l=0

(
n1

l

)(
n2

k − l

)
=

(
n1 + n2

k

)

2. Prove that

n∑
m=k

(
n

m

)
pm(1− p)n−m =

n!

(k − 1)!(n− k)!

∫ p

0

tk−1(1− t)n−kdt.

Long Answers: (8 Marks)

1. Show that if the random variables X1 and X2 have zero-one distributions and

are uncorrelated, they are independent. Also check whether this property holds

for all two-point random variables.

Exercises

1. Let the random variable Z have a generalized binomial distribution. Show that if

the pk are functions of n such that
∑n

k=1 pk = λ is fixed, and αn = max (p1, . . . , pn)

tends to zero as n→ ∞, then prove that

lim
n→∞

P (Z = r) = e−λλ
r

r!
(r = 0, 1, 2, . . .)

2. F (x) is the distribution function of a random variableX with the zeroone distribution.

Find the distribution function of the random variable Y = F (X).

(a) Do the same for a random variable X with the binomial distribution.

(b) Do the same when X has the Poisson distribution.
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Answers to check your progress

Section 2.1

1. B. The probability of success is constant across trials.

2. C. µ

Section 2.2

1. B. Number of trials and probability of success

2. A. P (X = k) = n!
k!(n−k)!

pk(1− p)n−k

Section 2.3

1. A. 10× 0.3 = 3

2. A. np(1− p)

Section 2.4

1. A. nK
N

2. A. nK(N−K)(N−n)
N2(N−1)

Section 2.5

1. C. Rate or average number of occurrences

2. A. Number of emails received in an hour

Section 2.6

1. A. a+b
2

2. A. 1
10
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Unit 3

Probability Continuous Distributions

Objective

This course aims to teach the students about some continuous probability distributions

are normal distribution, gamma distribution, beta distribution, Cauchy and laplace

distributions, multinomial distribution and compound distributions.

3.1 Normal Distribution

In this section we discuss the probability continuous distributions. We know that the

formulas;

F ′
1(y) = f1(y) =


1 for 0 ⩽ y ⩽ 1

0 for the remaining y

In the examples we have often considered random variables with normal distributions.

We now investigate the general form of the normal distribution.

Definition 3.1.1 The random variableX has a normal distribution if its density function

is given by the formula

f(x) =
1

σ
√
2π

exp

(
−(x−m)2

2σ2

)
(3.1)

where σ > 0. We first verify that (3.1) is a density. To see this let us denote

Y =
X −m

σ
(3.2)
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We obtain

f(y) =
1√
2π
e−y2/2 (3.3)

Since the function f(y) given by (3.3) is a density, we have the equation

1

σ
√
2π

∫ +∞

−∞
exp

(
−(x−m)2

2σ2

)
dx =

1√
2π

∫ +∞

−∞
e−y2/2dy = 1

The characteristic function ϕ(t) of the random variable Y has already been obtained in

example we have ϕ(t) = e−t2/2. Using equations (2.14), (2.15), and (3.2), we obtain

the expression

ϕ1(t) = exp

(
itm− 1

2
σ2t2

)
(3.4)

for the characteristic function of X. From (3.4) and (32.4) we obtain the moments

m1 = m, m2 = σ2 +m2, µ2 = σ2 (3.5)

As we can see from equalities (3.5), the constants m and σ which appear in (3.1) may

be easily interpreted; m is the expected value of X and σ is its standard deviation. The

shape of the curve of the density of the normal distribution depends on the parameter

σ. The normal curve is representing three normal distributions with the same expected

value m = 0 and different standard deviations: σ = 1, σ = 0.5 and σ = 0.25. The

normal distribution with expected value m and standard deviation σ is often denoted

by N(m;σ). By the symmetry of the normal curve with respect to the expected value

m all the central moments of odd order vanish,

µ2k+1 = 0 for every k (3.6)

It can be easily shown that

µ2k = 1 · 3 · . . . · (2k − 1)σ2k (3.7)

Formula (2.13) is a particular case of formula (3.7) for σ = 1. There are very exact

tables of the normal distribution which are used in computation. Usually we are

interested in the probability that the random variable X with a normal distribution

differs in absolute value from the expected value m = E(X) by more than λσ(λ > 0),

that is, more than a given multiple of the standard deviation. We find this probability,
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expressed as a function of λ, in the tables of the normal distribution giving the value

of the integral

P (|X −m| > λσ) =
2√
2π

∫ ∞

λ

e−y2/2dy

In fact,

P (|X −m| > λσ) = P

(
|X −m|

σ
> λ

)
= P (|Y | > λ)

where Y = (X − m)/σ. We may also ask for the probability that X exceeds the

expected value by more than a given multiple of the standard deviation λσ, that is, the

probability P (X > m+ λσ). We have

P (X > m+ λσ) = P (Y > λ) =
1√
2π

∫ +∞

λ

e−y2/2dy

Example 3.1.2 The random variableX has the distributionN(1; 2). Find the probability

that X is greater than 3 in absolute value. Let us introduce the standardized random

variable Y = (X − 1)/2. We have

P (|X| > 3) = P (|2Y + 1| > 3) = P

(∣∣∣∣Y +
1

2

∣∣∣∣ > 3

2

)
= P

(
Y +

1

2
< −3

2

)
+ P

(
Y +

1

2
>

3

2

)
= P (Y < −2) + P (Y > 1)

By definition of Y , we have

P (Y. < −2) =
1√
2π

∫ −2

−∞
e−t2/2dt =

1√
2π

∫ +∞

2

e−t2/2dt ∼= 0.023

P (Y > 1) =
1√
2π

∫ +∞

1

e−t2/2dt ∼= 0.159

The values of these integrals are obtained from tables of the normal distribution. Finally,

we have

P (|X| > 3) = 0.182

From tables of the normal distribution we see that, for a random variable X with the
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normal distribution N(m;σ), the following equalities are satisfied:

P (|X −m| > σ) ∼= 0.3173

P (|X −m| > 2σ) ∼= 0.0455

P (|X −m| > 3σ) ∼= 0.0027

We see thus that the normal distribution is highly concentrated around its expected value.

The probability that the value of X differs from the expected value by more than 3σ is

smaller than 0.01 . This property of the normal distribution has led mány statisticians to

apply the three-sigma rule, according to which for an arbitrary distribution there is small

probability that the random variable differs from the expected value by more than 3σ.

This rule should be applied very carefully. In fact, from the Chebyshev inequality follows

only the fact that for an arbitrary random variable X whose variance exists

P (|X −m| ⩾ 3σ) ⩽
1

9

The three-sigma rule can be applied only to distributions which do not differ much from

the normal distribution. Thus they must be almost symmetric distributions, having

only one maximum point in the neighborhood of the center of symmetry. The addition

theorem also holds for the normal distribution. Let X and Y be two independent random

variables, and let X have the distribution N (m1;σ1) and Y the distribution N (m2;σ2).

The respective characteristic functions of these distributions are

ϕ1(t) = exp

(
m1it−

1

2
t2σ2

1

)
ϕ2(t) = exp

(
m2it−

1

2
t2σ2

2

)

Because of the independence of X and Y , the random variable Z = X + Y has the

characteristic function

ϕ(t) = exp

[
(m1 +m2) it−

1

2

(
σ2
1 + σ2

2

)
t2
]

(3.8)

Expression (3.8) is the characteristic function of the normal distributionN
(
m1 +m2;

√
σ12 + σ22

)
,

which was to be proved. Cramér proved that the converse theorem is also true: if X1 and
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X2 are independent and the random variable X = X1 + X2 has a normal distribution,

then each of the random variables X1 and X2 has a normal distribution. Cramér’s

theorem is true for an arbitrary finite number of independent random variables. Besides

Cramer’s theorem, many others are known which characterize the normal distribution.

We present here the theorem of Skitowitch. Let X1, . . . , Xn be independent and have the

same nondegenerate distribution. Then the independence of the random variables L1 and

L2, defined by

L1 = a1X1 + . . .+ anXn

L2 = b1X1 + . . .+ bnXn

with
∑n

j=1 ajbj = 0 and
∑n

j=1 (ajbj)
2 ̸= 0, is a necessary and sufficient condition for the

distributions of the random variables X1, . . . , Xn to be normal. For n = 2 this theorem

has been proved by Bernstein, Darmois, and Gnedenko.

Let Us Sum Up

Learners, in this section we have seen that definition of normal distribution and also

given theorems and Illustrations.

Check Your Progress

1. What is the shape of the probability density function pdf of a normal distribution?

A. Symmetric bell curve

B. Skewed to the right

C. Skewed to the left

D. Uniform

2. What is the total area under the probability density function pdf of a normal

distribution?

A. 1

B.
√
2π

C. σ

D. σ2
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3.2 Gamma Distribution

The normal distribution is of great importance in probability theory and statistics. In

nature and technology we very often deal with distributions that are close to normal.

This phenomenon is an object of investigation of the theory of stochastic processes.

Moreover, under rather general assumptions the normal distribution is the limiting

distribution for sums of independent random variables when the number of terms

increases to infinity. This question is discussed in the next chapter. In applications we

often use a distribution associated with the gamma function, defined for p > 0 by the

formula

Γ(p) =

∫ ∞

0

xp−1e−xdx (3.1)

It is known that integral (3.1) is uniformly convergent with respect to p and thus Γ(p)

is a continuous function. Integrating (3.1) by parts, we obtain

Γ(p+ 1) =

∫ ∞

0

xpe−xdx =
[
−e−xxp

]∞
0
+ p

∫ ∞

0

xp−1e−xdx

Hence (3.2)

Γ(p+ 1) = pΓ(p)

In particular, if p = n, where n is an integer, we obtain from (3.2)

Γ(n+ 1) = nΓ(n)

Γ(n) = (n− 1)Γ(n− 1) (3.3)

Γ(2) = 1Γ(1).

Since

Γ(1) =

∫ ∞

0

e−xdx = −
[
e−x
]∞
0

= 1

we obtain from equalities (3.3)

Γ(n+ 1) = n! (3.4)

Substituting y = x/a(a > 0) in (3.1), we have

Γ(p)

ap
=

∫ ∞

0

yp−1e−aydy (3.5)
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Equation (3.5) is also valid when a is a complex number a = b + ic, where b > 0. We

shall not give the proof of (3.5) for this case. Let X be a random variable with the

density defined by the formula

f(x) =


0 for x ⩽ 0

bp

Γ(p)
xp−1e−bx for x > 0

(3.6)

where b > 0 and p > 0. The fact that (3.6) defines a density follows directly from

(3.5), since ∫ +∞

−∞
f(x)dx =

∫ +∞

0

bp

Γ(p)
xp−1e−bxdx = 1

and f(x) is a non-negative function.

Definition 3.2.1 If a random variable X has the density given by (3.6) we shall say that

X has a gamma distribution is represents such a density for p = 1 and b = 0.5. We now

find the characteristic function of this distribution. We have

ϕ(t) =

∫ +∞

−∞
eitxf(x)dx =

bp

Γ(p)

∫ +∞

0

xp−1e−(b−it)xdx (3.7)

Since, as has already been stated, equation (3.5) is valid when a = b + ic a nd b > 0,

then

ϕ(t) =
bp

Γ(p)
· Γ(p)

(b− it)p
=

1

(1− it/b)p
(3.8)

The function ϕ(t) can be differentiated an arbitrary number of times. Its k th derivative

is expressed by the formula

ϕ(k)(t) =
p(p+ 1) . . . (p+ k − 1)

bk
ik

1

(1− it/b)p+k
for k = 1, 2, . . .

From (2.4) we obtain

mk =
ϕ(k)(0)

ik
=
p(p+ 1) . . . (p+ k − 1)

bk
(3.9)

In particular, we have,

m1 =
p

b
, m2 =

p(p+ 1)

b2
, µ2 =

p

b2
(3.10)

Example 3.2.2 The random variable X has the gamma distribution with the density
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given by the formula

f(x) =

 0 for x ⩽ 0

2e−2x for x > 0

The reader may verify that if we substitute p = 1 and b = 2 in (3.6) we obtain the

distribution considered in this example. What is the probability that X is not smaller

than two?, We have

P (X ⩾ 2) = 2

∫ ∞

2

e−2xdx = −
[
e−2x

]∞
2

= e−4 ∼= 0.0183

In more complicated cases we can make use of the tables by K. Pearson to compute

probabilities of the gamma distribution. The probability distribution considered in example

is a particular case of the exponential distribution.

Definition 3.2.3 The random variable with density f(x), defined by the formula

f(x) =


0 for x ⩽ 0

λe−λx for x > 0

(3.11)

where λ > 0, has an exponential distribution. We now show that the addition theorem

is valid for random variables with gamma distributions. LetX1 andX2 be two independent

random variables with gamma distributions and with the respective characteristic

functions

ϕk(t) =
1

(1− it/b)pk
(k = 1, 2)

Let Us Sum Up

Learners, in this section we have seen that definition of gamma distribution and also

given theorems and Illustrations.

Check Your Progress

1. What are the two parameters of the gamma distribution?

A. Hape parameter (α) and scale parameter (β)

B. Mean (µ) and standard deviation (σ)
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C. Rate parameter (λ) and variance (σ2)

D. Mean (µ) and variance (σ2)

2. Which of the following distributions is a special case of the gamma distribution with

integer shape parameter α?

A. Normal distribution

B. Poisson distribution

C. Uniform distribution

D. Chi-squared distribution

3.3 Beta Distribution

Consider the sum of these random variables, X = X1+X2. From the independence of

X1 and X2 it follows that the characteristic function ϕ(t) of X equals

ϕ(t) =
1

(1− it/b)p1
· 1

(1− it/b)p2
=

1

(1− it/b)p1+p2

We see that X also has the gamma distribution, which proves the theorem. Laha and

Lukacs have given theorems characterizing the gamma distribution. We mention here

the following quite simple theorem of Lukacs. Let the independent random variables

X and Y with nondegenerate distributions take on only positive values. Then X and

Y have the gamma distribution with the same parameter b if and only if the random

variables U and V , where

U = X + Y, V =
X

Y

are independent. In the applications we also deal with a distribution associated with

the function defined by the formula

B(p, q) =

∫ 1

0

xp−1(1− x)q−1dx, where p > 0, q > 0 (3.12)

In the monograph of Saks and Zygmund the reader will find a proof of the following

equation connecting the function B(p, q) with the function Γ defined by (3.13):

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
(3.13)

Definition 3.3.1 We say that the random variable X has a beta distribution if its density
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is given by the formula

f(x) =


1

B(p,q)
xp−1(1− x)q−1 for 0 < x < 1

0 for x ⩽ 0 and x ⩾ 1

(3.14)

where p > 0, q > 0. That the function f(x) given by (3.14) is a density follows from

formula (3.11) and the fact that it is non-negative. It is convenient to obtain the

moments of the beta distribution directly from the formula

mk =
Γ(p+ q)

Γ(p)Γ(q)

∫ 1

0

xp+k−1(1− x)q−1dx =
Γ(p+ q)

Γ(p)Γ(q)
·B(p+ k, q) (3.15)

=
Γ(p+ q)Γ(p+ k)

Γ(p)Γ(p+ q + k)
=

p(p+ 1) . . . (p+ k − 1)

(p+ q)(p+ q + 1) . . . (p+ q + k − 1)

In particular,

m1 =
p

p+ q
, m2 =

p(p+ 1)

(p+ q)(p+ q + 1)
(3.15)

µ2 =
pq

(p+ q)2(p+ q + 1)
(3.16)

The density of the beta distribution with p = q = 2.

Example 3.3.2 The random variable X has the beta distribution with p = q = 2; hence

its density f(y) has the form

f(y) =


0 for y ⩽ 0 and y ⩾ 1

Γ(4)
Γ′(2)Γ′(2)

y(1− y) = 6y(1− y) for 0 < y < 1

What is the probability that X is not greater than 0.2?, We have

P (Y ⩽ 0.2) = 6

∫ 0.2

0

y(1− y)dy = 6

[
y2

2
− y3

3

]0.2
0

= 0.104

For computing the probabilities of the beta distribution we can use Pearson’s tables [4].

Definition 3.3.3 The random variable X has a Cauchy distribution if its density is given

by the formula is;

f(x) =
1

π
· λ

λ2 + (x− µ)2
, whereλ > 0 (3.17)
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The function f(x) is non-negative. By substituting

y =
x− µ

λ
, (3.18)

we obtain ∫ +∞

−∞
f(x)dx =

1

π

∫ +∞

−∞

dy

1 + y2
=

1

π
[arctan y]+∞

−∞ = 1

To find the characteristic function of the random variableX let us first find the characteristic

function of the random variable Y which is the linear transformation of X given by

(3.2). Thus Y has the density

f(y) =
1

π
· 1

1 + y2
(3.19)

and the characteristic function

ϕ(t) =
1

π

∫ +∞

−∞
eity

1

1 + y2
dy (3.20)

To find ϕ(t) consider first the density

f1(y) =
1

2
e−|y| (3.21)

The reader may verify that expression (3.10) is a density. The characteristic function

of the random variable with the density (3.10) is

ϕ1(t) =
1

2

∫ +∞

−∞
eitye−|y|dy =

1

2

∫ +∞

−∞
(cos ty + i sin ty)e−|y|dy

=

∫ ∞

0

cos tye−ydy

Integrating by parts, we obtain

∫ ∞

0

cos tye−ydy =
[
−e−y cos ty

]∞
0
− t

∫ ∞

0

sin tye−ydy

= 1− t

∫ ∞

0

sin tye−ydy
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Similarly, ∫ ∞

0

sin tye−ydy =
[
−e−y sin ty

]∞
0
+ t

∫ ∞

0

e−y cos tydy

= t

∫ ∞

0

e−y cos tydy

Hence we obtain ∫ ∞

0

e−y cos tydy = 1− t2
∫ ∞

0

e−y cos tydy

Finally we have

ϕ1(t) =

∫ ∞

0

e−y cos tydy =
1

1 + t2
(3.22)

The characteristic function (3.17) is absolutely integrable over the interval (−∞,+∞);

by (3.6) its corresponding density is

f1(y) =
1

2π

∫ +∞

−∞

e−ity

1 + t2
dt (3.23)

From (3.5) we obtain

e−|y| =
1

π

∫ +∞

−∞

e−ity

1 + t2
dt

Changing e−ity into eity under the integral sign (this does not affect the value of the

integral) and changing the roles of t and y, we obtain

e−|t| =
1

π

∫ +∞

−∞

eity

1 + y2
dy (3.24)

The right-hand side of (3.8) is identical with that of (3.4); thus we finally obtain

ϕ(t) = e−|t| (3.25)

Since X is a linear transformation of Y , for the characteristic function ϕ2(t) of X we

obtain the formula

ϕ2(t) = exp(iµt− λ|t|) (3.26)

Since, as can easily be seen, the function ϕ2(t) is not differentiable at t = 0, none of

the moments of the Cauchy distribution exist. The addition theorem is valid for the

Cauchy distribution. In fact, let X1 and X2 be two independent random variables with

densities g1(x) = 1
π
· λ1

λ2
1+(x−µ1)

2 , g2(x) =
1
π
· λ2

λ2
2+(x−µ2)

2 (λ1, λ2 > 0). The function ϕ(t)

can be differentiated an arbitrary number of times. Its k th derivative is expressed by
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the formula is;

ϕ(k)(t) =
p(p+ 1) . . . (p+ k − 1)

bk
ik

1

(1− it/b)p+k
for k = 1, 2, . . .

From (2.4) we obtain

mk =
ϕ(k)(0)

ik
=
p(p+ 1) . . . (p+ k − 1)

bk
(3.27)

In particular, we have,

m1 =
p

b
, m2 =

p(p+ 1)

b2
, µ2 =

p

b2
(3.28)

Example 3.3.4 The random variable X has the gamma distribution with the density

given by the formula

f(x) =

 0 for x ⩽ 0

2e−2x for x > 0

The reader may verify that if we substitute p = 1 and b = 2 in (3.6) we obtain the

distribution considered in this example. What is the probability that X is not smaller

than two?, We have

P (X ⩾ 2) = 2

∫ ∞

2

e−2xdx = −
[
e−2x

]∞
2

= e−4 ∼= 0.0183

In more complicated cases we can make use of the tables by K. Pearson to compute

probabilities of the gamma distribution. The probability distribution considered in example

is a particular case of the exponential distribution.

Definition 3.3.5 The random variable with density f(x), defined by the formula

f(x) =


0 for x ⩽ 0

λe−λx for x > 0

(3.29)

where λ > 0, has an exponential distribution. We now show that the addition theorem is

valid for random variables with gamma distributions. Let X1 and X2 be two independent
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random variables with gamma distributions and with the respective characteristic functions

ϕk(t) =
1

(1− it/b)pk
(k = 1, 2)

Let Us Sum Up

Learners, in this section we have seen that the definition of Beta distributionand also

given theorems and Illustrations.

Check Your Progress

1. What are the two shape parameters of the beta distribution?

A. α and β

B. µ and σ

C. λ and θ

D. α and λ

2. What is the mean of a beta distribution with shape parameters α and β?

A. β
α+β

B. α+β
α

C. α
α+β

D. α
β

3.4 Multinomial Distribution

Let us consider the following generalized Bernoulli scheme. We perform n random

experiments. As a result of each experiment one of the pairwise exclusive events

Aj(j = 1, 2, . . . , r, r + 1) occurs. Let pj = P (Aj), where p1 + . . . + pr + pr+1 = 1.

The results of the n experiments are independent. Consider the random variable (

X1, . . . , Xr, Xr+1 ), where Xj = kj means that event Aj has occurred kj times, kj =

0, 1, . . . , n.

P (X1 = k1, . . . , Xr = kr, Xr+1 = kr+1) (3.30)

=
n!

k1! . . . kr!kr+1!
pk11 . . . pkrr p

kr+1

r+1
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where k1 + . . . + kr + kr+1 = n. This formula gives us the probability that A1 occurs

k1 times, A2 occurs k2 times, . . . , Ar+1 occurs kr+1 times. We notice that the random

variables X1, . . . , Xr, Xr+1 satisfy the linear relation X1 + . . . +Xr +Xr+1 = n. Let us

express one of the random variables, say Xr+1, in terms of the remaining ones, that is,

Xr+1 = n−X1 . . .−Xr. Then formula (3.1) can be written in the form

P (X1 = k1, . . . , Xr = kr) =
n!

k1! . . . kr!(n−K)!
pk11 . . . pkrr q

n−K

where K = k1 + . . .+ kr and q = 1− p1 − . . .− pr.

Definition 3.4.1 The random variable (X1, . . . , Xr) with the probability function given

by formula (3.1) is said to have a multinomial distribution.

Let
(
Y

(1)
1 , Y

(1)
2 , . . . , Y

(1)
r

)
and

(
Y

(2)
1 , Y

(2)
2 , . . . , Y

(2)
r

)
be two random variables. Addition

of two multidimensional random variables will be understood in the vector sense, that

is, we say that the random variable (X1, X2, . . . , Xr) is the sum of the random variables(
Y

(1)
1 , Y

(1)
2 , . . . , Y

(1)
r

)
and

(
Y

(2)
1 , Y

(2)
2 , . . . , Y

(2)
r

)
, and we write

(X1, X2, . . . , Xr) =
(
Y

(1)
1 , Y

(1)
2 , . . . , Y (1)

r

)
+
(
Y

(2)
1 , Y

(2)
2 , . . . , Y (2)

r

)
if Xj = Y

(1)
j + Y

(2)
j (j = 1, 2, . . . , r). Now let

(
Y

(m)
1 , Y

(m)
2 , . . . , Y

(m)
r

)
, where m =

1, 2, . . . , n, be independent random vectors with the same distribution, having at most

one coordinate different from zero, where for m = 1, . . . , n and j = 1, 2, . . . , r

P
(
Y

(m)
j = 1

)
= pj, P

(
Y

(m)
j = 0

)
= 1− pj (3.31)

P
(
Y

(m)
1 = 0, . . . , Y (m)

r = 0
)
= q = 1− p1 − . . .− pr

Let Us Sum Up

Learners, in this section we have seen that definition of Multinomial Distribution and

also given theorems and examples.
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Check Your Progress

1. What is the multinomial distribution a generalization?

A. Binomial distribution

B. Poisson distribution

C. Uniform distribution

D. Normal distribution

2. What is the mean of Xi in a multinomial distribution with parameters n and

probabilities p1, p2, . . . , pk?

A. n(1− pi)

B. npi
C. pi
D. n

3.5 Compound Distributions

It is easy to verify that the random variable (X1, X2, . . . , Xr) with a multinomial distribution

satisfies the relation

(X1, X2, . . . , Xr) =
n∑

m=1

(
Y

(m)
1 , Y

(m)
2 , . . . , Y (m)

r

)

By (2.1) we find that the characteristic function ϕm (t1, t2, . . . , tr) of
(
Y

(m)
1 , Y

(m)
2 , . . . , Y

(m)
r

)
,

for m = 1, 2, . . . , n, is of the form

ϕm (t1, t2, . . . , tr) =
r∑

j=1

pje
itj + q

Hence, the characteristic function ϕ (t1, t2, . . . , tr) of (X1, X2, . . . , Xr) we obtain the

formula

ϕ (t1, t2, . . . , tr) =
n∏

m=1

ϕm (t1, t2, . . . , tr) =

(
r∑

j=1

pje
itj + q

)n

(3.32)

From the last formula and from formulas analogous to (2.8) we obtain for j = 1, 2, . . . , r

E (Xj) = npj, λjj = D2 (Xj) = npj (1− pj) (3.33)
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and for j, k = 1, 2, . . . , r and j ̸= k

λjk = E [(Xj − npj) (Xk − npk)] = −npjpk (3.34)

In applications we often deal with a random variable X whose distribution depends

on a parameter α which is a random variable with a specified distribution. Then, we

say that the random variable X has a compound distribution. We shall investigate

more closely two compound distributions, namely, a compound binomial distribution

and a compound Poisson distribution. Let the random variables Xk(k = 1, 2, . . .) be

independent and have the zero-one distribution defined by the probabilities P (Xk = 1) =

p and P (Xk = 0) = 1− p. Consider the random variable X = X1 +X2 + . . . +XN . For

a fixed N,X has the binomial distribution

P (X = s) =

(
N

s

)
ps(1− p)N−s (s = 0, 1, . . . , N) (3.35)

LetN be a random variable independent ofXk(k = 1, 2, . . .) with the Poisson distribution

P (N = n) =
λn

n!
e−λ (n = 0, 1, 2, . . .) (3.36)

As we see, here N plays the role of the parameter α mentioned previously. Consider

the two-dimensional random variable (X,N). We have

P (X = s,N = n) = P (X = s | N = n)P (N = n)

We are interested in the probability of the event X = s for every s; in other words, we

want to find the marginal distribution of X. This distribution is given by the formula

P (X = s) =
∞∑
n=0

P (X = s | N = n)P (N = n) (s = 0, 1, 2, . . .)
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Considering (3.1), (3.2), and the fact that
(
n
s

)
= 0 for n < s, we obtain

P (X = s) =
∞∑
n=0

e−λλ
n

n!

(
n

s

)
ps(1− p)n−s (3.37)

=
e−λps

s!

∞∑
n=s

λn(1− p)n−s

(n− s)!
=
e−λpsλs

s!

∞∑
n=s

[λ(1− p)]n−s

(n− s)!

=
e−λpsλs

s!
eλ(1−p) =

e−λp(λp)s

s!

We have obtained the Poisson distribution with expected value equal to pλ. This

distribution is called a compound binomial distribution.

Example 3.5.1 The probability that a newborn baby will be a boy is p = 0.517. The

number X of boys in a family with N children (N constant) is a random variable with

the binomial distribution

P (X = s) =

(
N

s

)
0.517s · 0.483v−s (s = 0, 1, . . . , N)

We might want the probability that X = s for all possible values of N , that is, the

probability that there will be s boys in a family with an arbitrary number of children. Here

N is a random variable with a certain distribution which can be determined empirically

for a given population by establishing the fraction of families with no children, with

one child, and so on. If we know the distribution of N , we can calculate the probability

P (X = s) for every s in a manner similar to the derivation of (3.3). We now investigate a

compound Poisson distribution. Let the random variable X have the Poisson distribution

given by the formula

P (X = k) =
λk

k!
e−λ (k = 0, 1, 2, . . .) (3.38)

and let λ be a random variable of the continuous type with the density

f(λ) =


av

Γ(v)
λv−1e−aλ for λ > 0

0 for λ ⩽ 0

(3.39)

where v > 0, a > 0. Now consider the two-dimensional random variable (X,λ). Here

one of the random variables is discrete and the other is continuous. For every h > 0 and

78



λ1 > 0 we have

P (X = k, λ1 ⩽ λ ⩽ λ1 + h) =

P (X = k | λ1 ⩽ λ ⩽ λ1 + h)P (λ1 ⩽ λ ⩽ λ1 + h)

Leı us divide both sides of this equality by h and pass to the limit as h → 0. From (3.8)

and (3.5) we obtain limh→0
1
h
P (X = k, λ1 ⩽ λ ⩽ λ1 + h) =

λk
1

k!
e−λ1 av

Γ(v)
λv−1
1 e−aλ1.

3.5.1 Two-Dimensional Distribution

Determines the two-dimensional distribution of (X,λ). Writing on the right-hand side

of (3.7) λ in place of λ1, we obtain the marginal distribution of X from the formula

P (X = k) =

∫ ∞

0

λk

k!
e−λ av

Γ(v)
λv−1e−aλdλ

From (3.5) we obtain

P (X = k) =
av

Γ(v)

∫ ∞

0

λk+v−1e−(a+1)λ

k!
dλ =

av

Γ(v)
· 1

k!
· Γ(k + v)

(a+ 1)k+v
(3.40)

=

(
a

1 + a

)v
v(v + 1) . . . (v + k − 1)

(1 + a)kk!

For simplicity in notation we generalize the symbol
(
n
r

)
, which has been used only for

positive integer values of n. For every x and every positive integer r we denote

(
x

r

)
=
x(x− 1) . . . (x− r + 1)

r!
=
x(r)

r!

Further, let p = 1/(1 + a) and q = 1 − p = a/(1 + a). By assumption, we have a > 0,

and hence the inequalities 0 < p < 1 and 0 < q < 1. Using this notation, we can write

(3.7) in the form

P (X = k) = (−1)k
(
−v
k

)
pkqv (k = 0, 1, 2, . . .) (3.41)

Definition 3.5.2 The compound Poisson distribution whose probability function is defined

by formula (3.41), is called the negative binomial distribution. Let us compute the
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characteristic function of this distribution.

ϕ(t) =
∞∑
k=0

P (X = k)eitk = qv
∞∑
k=0

(−1)k
(
−v
k

)
pkeitk

Using Maclaurin’s expansion,

(1− p)−v =
∞∑
k=0

(−1)k
(
−v
k

)
pk, |p| < 1

we obtain

ϕ(t) = qv
(
1− peit

)−v (3.42)

It follows that m1 =
ϕ′(0)
i

= v p
q
, m2 =

ϕ′′(0)
i2

=
(

p
q

)2
v(v + 1) + p

q
v,

µ2 = m2 −m2
1 = v

p

q

(
1 +

p

q

)

For the ordinary moment of order r we obtain the formulamr =
∑r−1

l=0 (−1)r−l
(
r−1
l

) (
p
q

)r−l

(−v)r−l

(r = 1, 2, . . .). Greenwood and Yule gave some examples of applications of the negative

binomial distribution, of which one follows.

Example 3.5.3 The number of accidents among 414 machine operators was investigated

for three successive months. The data are presented in Table. The symbol k in the first

column denotes the number of accidents which happened.

Table

Observed k Frequency Probability
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0 0.715 0.722

1 0.179 0.167

2 0.063 0.063

3 0.019 0.027

4 0.010 0.012

5 0.010 0.005

6 0.002

7 0.000

8 0.002

to the same operator during the period under investigation. In the second column

are given the observed frequencies for the operators who had k accidents in the

period under investigation, and in the third column, the corresponding probabilities

calculated from formula (3.8). The unknown parameters v and p appearing in this

formula were found in the following way: the expected value and the variance of

the observed distribution were computed, and then it was assumed that they coincide

with the values of E(X) and µ2 defined by (3.10). In this way two equations were

obtained which make it possible to determine the unknown parameters. As we see,

the observed frequencies differ little from the computed probabilities. This can be

explained as follows. The probability that a machine operator will have k accidents

during the period under investigation is determined by the Poisson distribution with

parameter λ. The value of this parameter is influenced by many factors depending

on time, such as the extent of the protective measures taken and the atmospheric

conditions. We can regard λ as a random variable. Assuming that λ has a gamma

distribution, it has been established that the observed and predicted frequencies are

close to each other.

Definition 3.5.4 The distribution of a random variable X given by (3.8), where v is an

integer, is called the Pascal distribution. This distribution can also be obtained from other

considerations, not as a compound but as a simple distribution. Consider a sequence of

experiments. Suppose that as a result of an experiment either the event A or the event

Ā may occur, and suppose that the results of the experiments are independent. We say

there is a success if the event A occurs, and a failure if not. Suppose that P (A) = p; thus

P (Ā) = 1− p = q. Denote by Xr the number of successes following the (r − 1) th failure

and preceding the r th failure. Thus, for instance, X1 is the number of successive successes
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preceding the first failure, X2 the number of successive successes after the first failure and

before the second failure. Let us consider the random variable X = X1 +X2 + . . . +Xv.

The event X = k is the product of two events; the event that the (k + v) th experiment

will lead to a failure and the event that among the remaining k+v−1 experiments k will

lead to successes. The probability of the first event is q and the probability of the second

is; (
k + v − 1

k

)
pkqv−1

Hence

P (X = k) =

(
k + v − 1

k

)
pkqv =

v(v + 1) . . . (v + k − 1)

k!
pkqv

= (−1)k
(
−v
k

)
pkqv (k = 0, 1, 2, . . .)

This formula is identical with (3.8). We now prove a theorem for the negative binomial

distribution, which is analogous to theorem for the binomial distribution. If the

equation

E(X) = v
p

q
= c

where c is a positive constant, is satisfied for every v, then the probability function of

the negative binomial distribution tends to the corresponding function of the Poisson

distribution as v → ∞.

Proof: From (3.8) we have

lim
v→∞

P (X = k) = lim
v→∞

v(v + 1) . . . (v + k − 1)

k!
pk(1− p)v (3.43)

=
ck

k!
lim
v→∞

v(v + 1) . . . (v + k − 1)

(v + c)k

(
1− c

v + c

)v

=
e−cck

k!

Formula (3.13) allows us to apply tables of the Pois.son distribution to a negative

binomial distribution. Consider now the random variable Y defined by the formula

Y =
N∑
k=1

Xk (3.44)

where Xk(k = 1, 2, . . .) and N are random variables and N takes on only positive

integer values.

Theorem 3.5.5 Let the random variable N be independent of the random variables
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X1, X2, . . . If the inequality

∞∑
k=1

P (N ⩾ k)E (|Xk|) <∞ (3.45)

is satisfied, the expected value of the random variable Y exists and

E(Y ) =
∞∑
k=1

P (N ⩾ k)E (Xk) (3.46)

Proof: From (3.14) and (3.22) we obtain

E(Y ) =
∞∑
n=1

P (N = n)E(Y | N = n)

=
∞∑
n=1

P (N = n)
n∑

k=1

E (Xk) =
∞∑
k=1

E (Xk) ·
∞∑
n=k

P (N = n)

=
∞∑
k=1

E (Xk)P (N ⩾ k)

From (3.15) the theorem follows. Suppose in addition that the random variables Xk have

the same distribution. Then, assumption (3.15) is satisfied if E(N) and the expected value

E(X) of Xk exist. Here, formula (3.16) has the form

E(Y ) = E(X)
∞∑
k=1

P (N ⩾ k) = E(X)
∞∑
k=1

kP (N = k) = E(X)E(N) (3.48)

The reader will notice that the expected value of the compound binomial distribution

satisfies relation (3.17).

Check Your Progress

1. What is a compound distribution?

A. A distribution resulting from combining two or more distributions

B. A distribution resulting from scaling a single distribution

C. A distribution resulting from shifting a single distribution

D. A distribution resulting from adding two or more identical distributions

2. Which of the following distributions can be used to model the number of successes
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in a sequence of independent Bernoulli trials with a random number of trials?

A. Negative binomial distribution

B. Poisson distribution

C. Uniform distribution

D. Exponential distribution

Glossary

1. The F ′
1(y) is pdf of normal distribution.

2. The σ is standard deviation of normal distribution.

3. The Γ(p) is gamma distribution of p.

4. The µr is rth order moment of beta distribution.

3.6 Let Us Sum Up

Learners, in this section we have seen that definition of compound distribution and

two dimensional distribution with Illustrations.

3.7 Unit Summary

The third unit content on the normal distribution, gamma distribution, beta distribution,

cauchy distribution, laplace distributions, multinomial distribution and compound

distributions. Also given theorems and examples.

Self-Assessment Questions

Short Answers: (5 Marks)

1. Show that if the random variables X1 and X2 have zero-one distributions and

are uncorrelated, they are independent. (b) Check whether this property holds
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for all two-point random variables. The random variable X has the binomial

distribution given by (2.1). Let

Ank =
P (X = k + 1)

P (X = k)
(k = 0, 1, . . . , n− 1)

2. Prove that (a) the expressions Ank − 1 and (n+ 1)p− 1− k are either both equal

to zero, both positive, or both negative. (b) P (X = k) takes on its maximum

value either at one point k0, which satisfies the inequality

(n+ 1)p− 1 < k0 < (n+ 1)p

if (n+ 1)p is not an integer, or at two points (n+ 1)p− 1 and (n+ 1)p if (n+ 1)p

is an integer. (c) for k > (n+ 1)p

Ank < exp

[
−k + (n+ 1)p

n

]
k∑

l=0

(
n1

l

)(
n2

k − l

)
=

(
n1 + n2

k

)

3. Prove that

n∑
m=k

(
n

m

)
pm(1− p)n−m =

n!

(k − 1)!(n− k)!

∫ p

0

tk−1(1− t)n−kdt.

4. Prove that for arbitrary λ1 > 0, λ2 > 0, and non-negative integer k

k∑
l=0

λl1λ
k−l
2

l!(k − l)!
=

(λ1 + λ2)
k

k!

Long Answers: (8 Marks)

1. If F (x) is the distribution function of a random variable X with the zero one

distribution. Find the distribution function of the random variable Y = F (X).

(a) Do the same for a random variable X with the binomial distribution.

(b) Do the same when X has the Poisson distribution.
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2. The random variable X is said to have a log normal distribution if its density is

of the form

f(x) =


0

1
(x−c)σ

√
2π

exp
{
− [log(x−c)−m]2

2σ2

}
(x ⩽ c)

(x < c)

where c is a constant. Find E(X) and D2(X).

3. (a). Prove that for every x > 0

1√
2π
e−x2/2

(
1

x
− 1

x3

)
< 1− Φ(x) <

1

x
√
2π
e−x2/2

where Φ(x) is the distribution function of the normal distribution N(0; 1).

(b) Find the analogous inequality for x < 0.

Exercises

1. The random variablesXi(i = 1, 2, 3) are independent and have the same distribution

N(0; 1). Find the distribution function of the random variable Y = max1⩽i⩽3 |Xi|.

2. Let X1, . . . , Xn be independent and have the same distribution function F (x) and

moments of arbitrary order. Let a1, . . . , an and b1, . . . , bn satisfy the relations

n∑
j=1

aj =
n∑

j=1

bj;
n∑

j=1

aj
2 =

n1∑
j=1

bj
2

where the sequence a1, . . . , an is not a permutation of the sequence b1, . . . , bn.

The distribution function F (x) is normal if and only if the random variables L1

and L2 defined as

L1 =
n∑

j=1

ajXj, L2 =
n∑

j=1

bjXj

have the same distribution.

3. Let X1, . . . , Xn be independent and have the same nondegenerate distribution

function F (x). Let
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U = X1 + . . .+Xn, V =
n∑

r=1

n∑
s=1

arsXrXs

B1 =
n∑

r=1

arr, B2 =
n∑

r=1

n∑
s=1

ars.

(a) If B1 ̸= 0 and B2 = 0, then F (x) is the normal distribution function if and

only if V has constant regression (of the first type) on U , i.e., E(V | u) = E(V ),

with probability 1.

(b) If E(V ) = 0, B1 ̸= 0, and B2 ̸= 0, then F (x) is the gamma distribution

function if and only if V has constant regression on U .

Answers to Check Your Progress

Session (Modulo) 3.1

1. A. Symmetric bell curve

2. A. 1

Session (Modulo) 3.2

1. A. hape parameter (α) and scale parameter (β)

2. D. Chi-squared distribution

Session (Modulo) 3.3

1. A. α and β

2. C. α
α+β

Session (Modulo) 3.4

1. A.Binomial distribution

2. B. npi
Session (Modulo) 3.5

1. A. A distribution resulting from combining two or more distributions

2. A. Negative binomial distribution
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Unit 4

Limit Theorems

Objective

This course aims to teach the students about limit theorems of stochastic convergence,

Bernoulli’s law of large numbers with the convergence of a sequence of distribution

functions and Levy-Cramer theorem, De Moivre-Laplace theorem, Lindeberg-Levy theorem

and Lapunov theorem.

4.1 Stochastic Converges

In this section we discuss the modern theory of limit distributions for sums of independent

random variables has developed greatly during the last thirty years, due mainly to

Khintchin, Gnedenko, Kolmogorov, and Lévy. A uniform general theory has been

developed, in which the limit theorems presented in this section are only particular

cases of general theorems which give conditions for the convergence of a sequence of

distribution functions of sums (much more general than the sums considered here) to

a limit distribution function and establish the set of all possible limit distributions. The

reader will find a detailed discussion of this theory in the books by Lévy Gnedenko and

Kólmogorov, and Loève. The question of the convergence of a sequence of distribution

functions for dependent random variables is also extremely interesting. Investigations

in this domain were originated by Markov. Bernstein has obtained some important

results. Consider the following example.
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Example 4.1.1 The random variable Yn can take on the values

0,
1

n
,
2

n
, . . . ,

n− 1

n
, 1

and its probability function is given by the formula

P
(
Yn =

r

n

)
=

(
n

r

)
1

2n
(r = 0, 1, . . . , n) (4.1)

Consider the random variable Xn defined by the formula

Xn = Yn −
1

2
(4.2)

Thus Xn can take on the values

−1

2
,
2− n

2n
,
4− n

2n
, . . . ,

n− 4

2n
,
n− 2

2n
,
1

2

The probability function of Xn is given by the formula

P

(
Xn =

2r − n

2n

)
=

(
n

r

)
1

2n

Let n = 2. The random variable X2 can take on the values

−0.5, 0, 0.5

with the respective probabilities 1
4
, 1
2
, 1
4
. Let ε be a positive number, say ε = 0.3. We see

that

P (|X2| > 0.3) = P

(
X2 = −1

2

)
+ P

(
X2 =

1

2

)
= 0.5

Now let n = 5. The random variable X5 can take on the values

−0.5,−0.3,−0.1, 0.1, 0.3, 0.5

with the respective probabilities

1

32
,
5

32
,
10

3

1

2
,
10

3
,
5

32
,
1

32
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Hence

P (|X5| > 0.3) = 0.0625

Now let n = 10. The random variable X10 can take on the values

−0.5,−0.4,−0.3,−0.2,−0.1, 0.0, 0.1, 0.2, 0.3, 0.4, 0.5

with the respective probabilities 1 1
1024

, 10
1024

, 45
1024

, 120
1024

, 210
1024

, 252
1024

, 210
1024

, 120
1024

, 45
1024

, 10
1024

, −1
1024

. Hence

P (|X10| > 0.3) ∼= 0.02

We see that for n = 10 the probability that X ′
n will exceed ε = 0.3 in absolute value is

very small. From the theorem, it follows that in our example

lim
n→∞

P (|Xn| > 0.3) = 0 (4.3)

and, moreover, that for the sequence of random variables Xn defined by formula (4.2),

relation (4.3) is satisfied for every ε > 0. Before we present the theorem just mentioned,

we define the notion of stochastic convergence.

Definition 4.1.2 The sequence {Xn} of random variables is called stochastically convergent
1 to zero if for every ε > 0 the relation

lim
n→∞

P (|Xn| > ε) = 0 (4.4)

is satisfied. We notice that in this definition we say nothing about the convergence of

the random variables Xn to zero in the sense which is understood in analysis. Thus,

if the sequence {Xn} is stochastically convergent to zero, it does not follow that for

every ε > 0 we can find a finite n0 such that for all n > n0 the relation |Xn| < ε

will be satisfied. From the definition of stochastic convergence it follows only that the

probability of the event |Xn| ⩾ ε tends to zero as n→ ∞.

Theorem 4.1.3 Let Fn(x)(n = 1, 2, . . .) be the distribution function of the random variable

Xn. The sequence {Xn} is stochastically convergent to zero if and only if the sequence

{Fn(x)} satisfies the relation

lim
n→∞

Fn(x) =


0 for x ⩽ 0

1 for x > 0

(6.2.5)
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Proof: Suppose that the sequence {Xn} is stochastically convergent to zero. From relation

(4.4) it follows that for an arbitrary ε > 0 as n→ ∞ we have

P (Xn < −ε) = Fn(−ε) → 0 (4.6)

P (Xn > ε) = 1− Fn(ε)− P (Xn = ε) → 0

Since for every ε > 0 we can find an ε1 such that 0 < ε1 < ε, it follows from relation

(4.4) that for an arbitrary ε > 0 we have P (Xn = ε) → 0. Hence from (4.6) it follows

that

1− Fn(ε) → 0 (4.7)

Replacing ε by −x in formula (4.6) and by x in formula (4.7), where x > 0, we obtain

(4.5). Suppose now that (4.5) is satisfied. Then for arbitrary ε > 0 we have

lim
n→∞

P (Xn < −ε) = lim
n→∞

Fn(−ε) = 0

lim
n→∞

P (Xn > ε) ⩽ lim
n→∞

P (Xn ⩾ ε) = lim
n→∞

[1− Fn(ε)] = 0

Relation (4.4) follows immediately from the last two relations, which proves the theorem.

We remind the reader that the random variable X with a one-point distribution such that

P (X = 0) = 1, has the distribution function

F (x) =


0 for x ⩽ 0

1 for x > 0

(4.8)

and this distribution function is continuous at every point x ̸= 0. From relations (4.6)

and (4.7) it follows that for every point x ̸= 0 the sequence of distribution functions

Fn(x) converges (in the usual sense) to the distribution function F (x) defined by formula

(4.8). We conclude that the sequence of distribution functions Fn(x) of random variables,

convergent stochastically to zero, converges to the distribution function of the one-point

distribution at every point x ̸= 0. Since the points x ̸= 0 are continuity points of this

distribution function, we can formulate the preceding result in the following way. The

sequence {Xn} of random variables is stochastically convergent to zero if and only if the

sequence {Fn(x)} of distribution functions of these random variables is convergent to the

distribution function F (x) given by (4.8) at every continuity point of the latter. We stress
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the fact that at the point of discontinuity of F (x), that is, at the point x = 0, the sequence

{Fn(0)} may not converge to F (0). We can also consider the stochastic convergence of a

sequence of random variables {Xn} to a constant c ̸= 0. This will mean that the sequence

of random variables {Yn} = {Xn − c} is stochastically convergent to zero. Similarly, we

can define the stochastic convergence of a sequence of random variables {Xn} to a random

variable X. This will mean that the sequence of random variables {Zn} = {Xn −X}
is stochastically convergent to zero. We now prove the theorem stated in Section 6.2,

of which formula (4.3) is a particular case. Denote by {Yn} the sequence of random

variables with probability functions given by the formula

P
(
Yn =

r

n

)
=

(
n

r

)
pr(1− p)n−r (4.9)

where 0 < p < 1 and r can take on the values 0, 1, 2, . . . , n. Further denote

Xn = Yn − p (4.10)

Theorem 4.1.4 The sequence of random variables {Xn} given by (4.7) and (4.8) is

stochastically convergent to 0, that is, for any ε > 0 we hare

lim
n→∞

P (|Xn| > ε) = 0 (4.11)

Proof: We shall use the Chebyshev inequality in the proof. By equalities (3.8) we have

E (Xn) = 0 (4.12)

σn =
√
D2 (Xn) =

√
p(1− p)/n (4.13)

Substituting (4.4) and (4.5) into the Chebyshev inequality, we obtain

P
(
|Xn| > k

√
p(1− p)/n

)
⩽

1

k2
(4.14)

where k is an arbitrary positive number. Set

k = ε
√
n/p(1− p)
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Let Us Sum Up

Learners, in this section we have seen that definition of limit theorems and stochastic

converges and also given theorems and with Illustrations.

Check Your Progress

1. Let {Xn} be a sequence of random variables. If Xn
p−→ X and Xn

d−→ X (converges

in distribution), which of the following statements is true?

A. Convergence in probability implies convergence in distribution.

B. Convergence in distribution implies convergence in probability.

C. Convergence in probability implies almost sure convergence.

D. Convergence in distribution implies almost sure convergence.

2. If Xn
a.s.−−→ X which of the following statements about Xn and X is true?

A. Xn converges in L2 if Xn
a.s.−−→ X

B. Xn
p−→ X

C. Xn
d−→ X

D. Xn converges in mean if Xn
a.s.−−→ X

4.2 Convergence of A Sequence of Distribution Functions

The inequality (4.6). We then obtain the inequality

P (|Xn| > ε) ⩽
p(1− p)

nε2
<

1

nε2
(4.15)

From inequality (4.15) it follows that for every ε > 0 we have (4.13), which was to

be proved. The theorem just proved is called the Bernoulli law of large numbers. This

law can be interpreted in practice as follows. We perform n experiments according

to the Bernoulli scheme, where the probability of the event A is equal to p. The law

of large numbers states that, for large values of n, the probability that the observed

frequency of A will differ little from p is close to one. In the following sections we

investigate other laws of large numbers. In Section 4.2 we considered a sequence

of distribution functions which converges to the distribution function (4.8) of the
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one-point distribution at every continuity point of this distribution. We now investigate

the question of convergence of sequences of distribution functions generally.

Definition 4.2.1 The sequence {Fn(x)} of distribution functions of the random variables

{Xn} is called convergent, if there exists a distribution function F (x) such that, at every

continuity point of F (x), the relation

lim
n→∞

Fn(x) = F (x) (4.16)

is satisfied. The distribution function F (x) is called the limit distribution function.

As we see, it is not required that the sequence {Fn(x)} converge to F (x) at the

discontinuity points of F (x). The sequence {Xn} of random variables defined by

formula (4.2) is stochastically convergent to zero; thus the sequence {Fn(x)} of their

distribution functions converges to the distribution function F (x) defined by formula

(4.8). This distribution function is discontinuous at x = 0. It is easy to verify that

the sequence of numbers {Fn(0)} is not convergent to F (0). Consider the subsequence

of the sequence {Fn(0)} containing only terms with the odd indices n = 2k + 1. The

random variable X2k+1 can take on the values

−1

2
,
2− (2k + 1)

2(2k + 1)
,
4− (2k + 1)

2(2k + 1)
, . . . ,

2k + 1− 4

2(2k + 1)
,
2k + 1− 2

2(2k + 1)
,
1

2

For every k, half of these terms are each less than zero, the other half greater than

zero. The probability that X2k+1 will take on a value less than zero equals 0.5 . Thus,

for every k we have P (X2k+1 < 0) = F2k+1(0) = 0.5 . Since F (0) = 0, we have

lim
k→∞

F2k+1(0) = 0.5 ̸= F (0)

From (4.16) it follows that limFn(0) ̸= F (0). Nevertheless, by the definition of

the convergence of a sequence of distribution functions, the sequence of distribution

functions of example 6.2.1 is convergent to the distribution function given by formula

(4.8). It is important to note that we speak about the convergence of a sequence

of distribution functions only when it is convergent to a distribution function. This

remark is important since it may happen that a sequence of distribution functions

converges to a function that is not a distribution function.

Example 4.2.2 Let us consider the sequence {Xn} of random variables with the one-point
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distributions given by the formula

P (Xn = n) = 1 (n = 1, 2, . . .)

The distribution function Fn(x) of Xn is of the form

Fn(x) =


0 for x ⩽ n

1 for x > n

We have the relation

lim
n→∞

Fn(x) = 0 (−∞ < x <∞)

Thus the sequence {Fn(x)} is not convergent to a distribution function. Let the sequence

{Fn(x)} be convergent to the distribution function F (x). Let a and b, where a < b, be two

arbitrary continuity points of the limit distribution function F (x). Then we have

lim
n→∞

P (a ⩽ Xn < b) = F (b)− F (a) (4.17)

In fact,

P (a ⩽ Xn < b) = Fn(b)− Fn(a) (4.18)

From the assumption that a and b are continuity points of the distribution function F (x)

it follows that

Fn(b) → F (b), Fn(a) → F (a) (4.19)

From (4.18) and (4.19) follows (4.17). Let the sequence {Fn(x)} be convergent to

the distribution function F (x). Let Pn(S) and P (S) denote the probability functions

corresponding respectively to the distribution functions Fn(x) and F (x). It can be shown

that for an arbitrary Borel set S on the real line R such that P (S̄ ∩ R− S) = 0 (here Ā

denotes the closure of the set A ) we have the relation

lim
n→∞

Pn(S) = P (S) (4.20)

We observe that even when the limit distribution function is everywhere continuous, Borel

sets S may exist, for which (4.20) is not satisfied. This will happen if P (S̄ ∩R− S) > 0.

The following example is due to Robbins.
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Example 4.2.3 The random variable Xn(n = 1, 2, . . .) has the density fn(x) given by

fn(x) =


2n

ε
if i

n
− ε

(n2n)
< x < i

n
(i = 1, . . . , n)

0 otherwise

where 0 < ε < 1. The distribution function Fn(x) of Xn is then, for i = 1, . . ., n, of the

form

Fn(x) =



0 if x ⩽ 0

i−1
n

if i−1
n

⩽ x ⩽ i
n
− ε

(n2n)

i−1
n

+
2n(x− i

n
+ ε

n2n )
ε

1 if i
n
− ε

n2n
< x < i

n

if x ⩾ 1

(4.21)

Thus for every x in the interval I = [0, 1] we have

0 ⩽ x− Fn(x) ⩽
1

n

By considering the values taken by Fn(x) outside the interval I, we obtain for every real x

lim
n→∞

Fn(x) = F (x) =


0 if x ⩽ 0

x if 0 < x < 1

1 if x ⩾ 1

(4.22)

Let us denote by Sn the set on which fn(x) > 0, and by S∞ the Borel set defined as

S∞ =
∞∑
n=1

Sn

Let Pn(S) and P (S) denote the probability functions which correspond to the distribution

functions Fn(x) and F (x), respectively. We have for n = 1, 2, . . .

Pn (Sn) =

∫
Sn

fn(x)dx = 1
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Since S∞ > Sn we obtain Pn (S∞) = 1; hence,

lim
n→∞

Pn (S∞) = 1

On the other hand,

P (S∞) =

∫
S∞

dx ⩽
∞∑
n=1

(
n
ε

n2n

)
= ε < 1 (4.24)

thus

lim
n→∞

Pn (S∞) ̸= P (S∞)

despite the fact that the distribution function F (x) given by (4.22) is every where continuous.

This is because P
(
S̄∞ ∩R− S∞

)
> 0. Indeed 1, we have P

(
S̄∞∩ R− S∞

)
= P

(
S̄∞ ∩ I − S∞

)
,

and the set I − S∞ is perfect and nowhere dense in I; hence I − S∞ = I − S∞ and

I − (I − S∞) = S̄∞ = I. Thus we obtain, using (4.24),

P
(
S̄∞ ∩ I − S∞

)
= P (I ∩ I − S∞) = P (I − S∞) ⩾ 1− ε

We now give the generalization of definition to random vectors.

Definition 4.2.4 The sequence of distribution functions {Fn (x1, . . . , xk)} of random vectors

(Xn1, Xn2, . . . , Xnk) is convergent if there exists a distribution function F (x1, . . . , xk) such

that at every one of its continuity points.

lim
n→∞

Fn (x1, x2, . . . , xk) = F (x1, x2, . . . , xk) (4.25)

It is not difficult to show that if (6.25) holds, and Pn(S) and P (S) denote the respective

probability functions, then for every Borel set in k-dimensional Euclidean space Rk

such that P
(
S̄ ∩Rk − S

)
= 0 relation (4.20) holds. This relation holds, in particular,

for continuity intervals. The following theorem has important applications. We present

it without proof.

Theorem 4.2.5 Let {Fn (x1, . . . , xk)} (n = 1, 2, . . .) be a sequence of distribution functions

of random vectors (Xn1, . . . , Xnk) and let F (x1, . . . , xk) and P (S) be the distribution

function and probability function of a random vector (X1, . . . , Xk), respectively. Relation

(6.25) holds if and only if for 1 Information concerning the notions introduced here can

be found in this section.
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Let Us Sum Up

Learners, in this section we have seen that the definition of convergence of a sequence

of distribution functions and also given theorems and examples.

Check Your Progress

1. Which of the following is a necessary condition for the convergence of {Fn} to F in

distribution?

A. Fn(x) → F (x) uniformly for all x ∈ R.

B. Fn(x) → F (x) at every point x ∈ R.

C. Fn(x) → F (x) at all continuity points of F .

D. Fn(x) → F (x) for all x such that F is not continuous.

2. If {Fn} converges to F uniformly, then {Fn} also converges is:

A. Almost surely to F

B. In probability to F

C. In distribution to F

D. In mean to F

4.3 The Riemann-Stieltjes Integral and Law of Large

Numbers

Every function g (x1, . . . , xk) continuous on a set S satisfying the relation P (S) = 1,

the equality

lim
n→∞

Hn(α) = H(α)

holds at every continuity point α of H(α), where Hn(α) and H(α) are the distribution

functions of g (Xn1, . . . , Xnk) and g (X1, . . . , Xk), respectively. In further considerations

we use the theorem proved by Levy and Cramér which makes it possible to investigate

the convergence of a sequence of distribution functions {Fn(x)} of random variables

{Xn} to a distribution function F (x) by investigating the convergence of the sequence

of characteristic functions ϕn(t) of the random variables Xn. This theorem plays an

important role in probability theory. The proof of this theorem requires the notion

of the Riemann-Stieltjes integral, which for simplicity is called the Stieltjes integral.

99



It will be seen that distributions of random variables of the continuous and discrete

types, considered separately, can be treated together by means of the Stieltjes integral.

We first introduce the notion of a function of bounded variation. Let F (x) be a function

defined in the interval [a, b], which can be either finite or infinite. Let us take a partition

of the interval [a, b] with the points

a = x0 < x1 < x2 < . . . < xn = b

and form the sum

T =
n−1∑
k=0

|F (xk+1)− F (xk)|

The value of T may depend, of course, on the number n and on the partition into

subintervals.

Definition 4.3.1 The least upper bound of the values of T is called the total absolute

variation of the function F (x) in the interval [a, b].

Definition 4.3.2 If the total absolute variation of the function F (x) in the interval [a, b]

is finite, we shall say that F is a function of bounded variation on the interval [a, b].

It is easy to verify that every nondecreasing bounded function is of bounded variation.

Indeed, here the expression F (xk+1)−F (xk) is nonnegative for arbitrary k and arbitrary

partition of the interval [a, b], hence

T =
n−1∑
k=0

[F (xk+1)− F (xk)] = F (b)− F (a)

and our assertion then follows from the assumption that F (b) and F (a) are finite. It also

follows that every distribution function F (x).

Let Us Sum Up

Learners, in this section we have seen that the definition of Riemann-Stieltjes integral

and law of large numbers and also given theorems and examples.
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Check Your Progress

1. Which of the following conditions is necessary for the existence of the Riemann-Stieltjes

integral
∫ b

a
f(x) dg(x)?

A. f must be continuous on [a, b] and g must be of bounded variation on [a, b].

B. f must be integrable over [a, b] and g must be continuous on [a, b].

C. f must be differentiable on [a, b] and g must be of bounded variation.

D. f must be continuous on [a, b] and g must be differentiable on [a, b].

2. The formula for integration by parts in the Riemann-Stieltjes integral is:

A.
∫ b

a
f(x) dg(x) = f(b)g(b)− f(a)g(a)−

∫ b

a
g(x) df(x)

B.
∫ b

a
f(x) dg(x) = f(a)g(b)− f(b)g(a) +

∫ b

a
g(x) df(x)

C.
∫ b

a
f(x) dg(x) = f(a)g(b)− f(a)g(a)−

∫ b

a
f(x) dg(x)

D.
∫ b

a
f(x) dg(x) =

∫ b

a
g(x) df(x)

4.4 Levy-Cramer Theorem

If Z = X/Y and P (Y = 0) = 0,

F (z) =

∫ 0

−∞
[1− F1(zy)] dF2(y) +

∫ ∞

0

F1(zy)dF2(y) (4.26)

We first present the Levy-Cramer theorem in the form of two theorems.

Theorem 4.4.1 If the sequence {Fn(x)} (n = 1, 2, . . .) of distribution functions is convergent

to the distribution function F (x), then the corresponding sequence of characteristic functions

{ϕn(t)} converges at every point t (−∞ < t < +∞) to the function ϕ(t) which is the

characteristic function of the limit distribution function F (x), and the convergence to

ϕ(t) is uniform with respect to t in every finite interval on the t-axis.

Proof: From the definition of a characteristic function we have

ϕn(t) =

∫ ∞

−∞
eitxdFn(x), ϕ(t) =

∫ ∞

−∞
eitxdF (x)
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Let a < 0 and b > 0 be continuity points of the distribution function F (x). We have

ϕn(t) =

∫ a

−∞
eitxdFn(x) +

∫ b

a

eitxdFn(x) +

∫ ∞

b

eitxdFn(x) (4.27)

= In1 + In2 + In3

ϕ(t) =

∫ a

−∞
eitxdF (x) +

∫ b

a

eitxdF (x) +

∫ ∞

b

eitxdF (x)

= I1 + I2 + I3.

Consider the difference

In2 − I2 =

∫ b

a

eitxdFn(x)−
∫ b

a

eitxdF (x)

Integrating by parts, we obtain

In2 − I2 = eitx
{
[Fn(x)]

b
a − [F (x)]ba

}
− it

∫ b

a

[Fn(x)− F (x)] eitxdx

hence

|In2 − I2| ⩽ |Fn(b)− F (b)|+ |Fn(a)− F (a)|+ |t|
∫ b

a

|Fn(x)− F (x)| dx

Let ε > 0 be arbitrary. By the assumption of the theorem and by the fact that a and b are

continuity points of F (x), we obtain, for sufficiently large n,

|Fn(b)− F (b)| < ε

9
, |Fn(a)− F (a)| < ε

9

Furthermore, by the Lebesgue theorem on passage to the limit under the integral sign by

the assumption of the theorem, and by the fact that |Fn(x)− F (x)| is uniformly bounded

in every interval, we obtain

lim
n→∞

∫ b

a

|Fn(x)− F (x)| dx =

∫ b

a

lim
n→∞

|Fn(x)− F (x)| dx

Since the function under the integral sign on the right-hand side of the last formula

is equal to zero except at most at a countable number of points, the integral under
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consideration is equal to zero. Suppose now that t satisfies the inequality T1 < t < T2,

where T1 and T2 are arbitrary fixed numbers, and let K be the greater of the numbers

|T1| and |T2|, that is, K = max (|T1| , |T2|). Then, for sufficiently large n and all t under

consideration, we have

|t|
∫ b

a

|Fn(x)− F (x)| dx ⩽ K

∫ b

a

|Fn(x)− F (x)| dx < ε

9

Thus we obtain

|In2 − I2| <
ε

3
(4.28)

Now consider the difference

In1 − I1 =

∫ a

−∞
eitxdFn(x)−

∫ a

−∞
eitxdF (x)

We have

|In1 − I1| ⩽
∫ a

−∞
dFn(x) +

∫ a

−∞
dF (x) = Fn(a) + F (a).

Thus, if a is sufficiently large in absolute value, then, by the assumption of the theorem

and the continuity of F (x) at a, we have, for sufficiently large n,

Fn(a) <
ε

6
, F (a) <

ε

6

Hence for all t and sufficiently large n,

|In1 − I1| <
ε

3
(4.29)

Similarly, we obtain that

|In3 − I3| <
ε

3
(4.30)

The theorem follows from formulas (4.27) to (4.30).

Theorem 4.4.2 If the sequence of characteristic functions {ϕn(t)} converges at every

point t(−∞ < t < +∞) to a function ϕ(t) continuous in some interval |t| < τ , then

the sequence {Fn(x)} of corresponding distribution functions converges to the distribution

function F (x) which corresponds to the characteristic function ϕ(t).

Proof: In the proof we use the Helly theorem, which states that every sequence of distribution

functions {Fn(x)} contains a subsequence {Fnk
(x)} convergent to some nondecreasing

103



function F (x). The function F (x) can be changed at its discontinuity points so that it

becomes continuous from the left. It does not, however, follow from the Helly theorem

that F (x) is a distribution function. Since F (x) is the limit of distribution functions, we

have 0 ⩽ F (x) ⩽ 1, but we do not know whether F (−∞) = 0 and F (+∞) = 1. We show

that the last relations are satisfied. Suppose that

α = F (+∞)− F (−∞) < 1 (4.31)

Since ϕn(t) → ϕ(t) and ϕn(0) = 1, we have ϕ(0) = 1. By the assumption that the function

ϕ(t) is continuous, it follows that in some neighborhood of the origin t = 0 it will differ

little from 1 ; thus for sufficiently small τ we have the inequality

1

2τ

∣∣∣∣∫ τ

−τ

ϕ(t)dt

∣∣∣∣ > 1− ε

2
> α+

ε

2
(4.32)

where the number ε is chosen in such a way that α + ε < 1. Since the subsequence

{Fnk
(x)} converges to F (x), it follows from relation (4.31) that we can choose a > 4/ετ

such that a and −a are continuity points of the limit distribution function, and a number

K such that for k > K

αk = Fnk
(a)− Fnk

(−a) < α+
ε

4

On the other hand, since ϕn(t) → ϕ(t), it follows from relation (4.32) that for sufficiently

large k the inequality
1

2τ

∣∣∣∣∫ τ

−τ

ϕnk
(t)dt

∣∣∣∣ > α+
ε

2
(4.33)

is satisfied. We show that this inequality is not satisfied. Indeed, we have

∫ τ

−τ

ϕnk
(t)dt =

∫ τ

−τ

[∫ +∞

−∞
eitxdFnk

(x)

]
dt =

∫ +∞

−∞

[∫ τ

−τ

eitxdt

]
dFnk

(x)

Since |eitx| = 1, we obtain ∣∣∣∣∫ τ

−τ

eitxdt

∣∣∣∣ ⩽ 2τ (4.34)

Moreover,

∣∣∣∣∫ τ

−τ

eitxdt

∣∣∣∣ = ∣∣∣∣[eitxix
]τ
−τ

∣∣∣∣ = 2

|x|
| sin τx| ⩽ 2

|x|
<

2

a
for |x| > a (4.35)

Divide the whole axis into two parts, namely, into the interval |x| ⩽ a and the complement
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of this interval. We have

∣∣∣∣∫ +∞

−∞

(∫ τ

−τ

eitxdt

)
dFnk

(x)

∣∣∣∣
⩽

∣∣∣∣∫
|x|⩽a

(∫ τ

−τ

eitxdt

)
dFnk

(x)

∣∣∣∣+ ∣∣∣∣∫
|x|>a

(∫ τ

−τ

eitxdt

)
dFnk

(x)

∣∣∣∣
Using inequality. (4.34) for |x| ⩽ a and inequality (4.35)) for |x| > a, we obtain

1

2τ

∣∣∣∣ ∫ τ

−τ

ϕnk
(t)dt ⩽

∣∣∣∣∫
|x|⩽a

dFnk
(x)

∣∣∣∣+ 1

aτ

∣∣∣∣∫
|x|>a

ḋFnk
(x)

∣∣∣∣ (4.36)

⩽ αk +
1

aτ
⩽ αk +

ε

4
< α+

ε

4
+
ε

4
= α +

ε

2

The last inequality contradicts inequality (4.33). Hence the function F (x) is a distribution

function. From above theorem it follows that ϕ(t) is its characteristic function. We now

prove that not only the subsequence {Fnk
(x)}, but the whole sequence {Fn(x)} converges

to F (x). If this were not so there would be another subsequence {Fn(x)} convergent to

a limit function F̃ (x) different from F (x). The previous reasoning implies that F̃ (x) is a

distribution function and from theorem it follows that F̃ (x) has the same characteristic

function as F (x). Hence, by theorem, F̃ (x) ≡ F (x). Thus every subsequence of the

sequence {Fn(x)} contains a subsequence convergent to the same distribution function

F (x); hence the sequence {Fn(x)} converges to F (x). From theorems a and 6.6.1b we

obtain immediately:

Theorem 4.4.3 Levy-Cramer: Let {Xn} (n = 1, 2, . . .) be a sequence of random variables

and let Fn(x) and ϕn(t) be respectively the distribution function and the characteristic

function of Xn. Then the sequence {Fn(x)} is convergent to a distribution function F (x)

if and only if the sequence {ϕn(t)} is convergent at every point t(−∞ < t < +∞) to a

function ϕ(t) continuous in some neighborhood |t| < τ of the origin. The limit function

- ϕ(t) is then the characteristic function of the limit distribution function F (x) and the

convergence ϕn(t) → ϕ(t) is uniform in every finite interval on the t-axis. We observe that

theorem 4.1 remains true if we assume the continuity of the limit function ϕ(t) only at the

point t = 0. We also observe that in the general case of theorem 4.1 we cannot replace the

convergence at every point t in the interval (−∞,+∞) by convergence in some interval on

the t-axis containing the origin. If, however, all the random variables Xn are uniformly

bounded from above (or below), then for the sequence {Fn(x)} of distribution functions

to converge to a distribution function F (x), it is sufficient that in some interval |t| < τ the

sequence {ϕn(t)} is convergent to a function ϕ(t) continuous at the origin. This theorem
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was proved by Zygmund. A We use theorem in proving the de Moivre-Laplace theorem.

Denote by {Xn} a sequence of random variables with the binomial distribution. For every

n the random variable Xn can take on the values 0, 1, . . . , n and its probability function

is given by the formula

P (Xn = r) =

(
n

r

)
prqn−r (4.37)

where 0 < p < 1 and q = 1− p. As we know from formulas (4.4), we have

E (Xn) = np, D2 (Xn) = npq

Consider the sequence {Yn} of standardized random variables

Yn =
Xn − np
√
npq

(4.38)

We shall prove a limit theorem called the de Moivre-Laplace theorem.

Theorem 4.4.4 Let {Fn(y)} be the sequence of distribution functions of the random

variables Yn defined, where the Xn have the binomial distribution given by formula

(4.37). If 0 < p < 1, then for every y we have the relation

lim
n→∞

Fn(y) =
1√
2π

∫ y

−∞
e−y2/2dy (4.39)

Proof: According to formula (3.3), the characteristic function ϕx(t) of Xn has the form

ϕx(t) =
(
q + peit

)n (4.40)

Thus by equality (2.17) the characteristic function ϕy(t) of the random variable Yn is

given by the formula

ϕy(t) = exp

(
− npit
√
npq

)[
q + p exp

(
it

√
npq

)]n
(4.41)

=

[
q exp

(
− pit
√
npq

)
+ p exp

(
qit

√
npq

)]n

Let us expand the function eiz in the neighborhood of z = 0 according to the Taylor
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formula for k terms with the remainder in the Peano form,

eiz =
k∑

j=0

(iz)j

j!
+ o

(
zk
)

We obtain

p exp

(
qit

√
npq

)
= p+ it

√
pq/n− qt2

2n
+ o

(
t2

n

)
q exp

(
− pit
√
npq

)
= q − it

√
pq/n− pt2

2n
+ o

(
t2

n

)
where for every t we have

lim
n→∞

no

(
t2

n

)
= 0 (4.42)

Substituting these expressions in formula (4.41) and considering the fact that p+ q = 1,

we obtain

ϕy(t) =

[
1− t2

2n
+ o

(
t2

n

)]n
Thus

log ϕy(t) = n log

[
1− t2

2n
+ o

(
t2

n

)]
= n log(1 + z)

We observe that for every fixed t for sufficiently large n, we have |z| < 1. Thus we can

write

log ϕy(t) = −t
2

2
+ no

(
t2

n

)
By (4.42) we obtain

lim
n→∞

log ϕy(t) = −t
2

2

Hence

lim
n→∞

ϕy(t) = e−t2/2

We have thus established that the sequence of characteristic functions ϕy(t) of the standardized

random variables Yn given by formula (4.38) onverges as n → ∞ to the characteristic

function of a random variable with a normal distribution whose distribution function is

given by the right-hand side of formula (4.39). By theorem 6.6.1b we immediately obtain

formula (4.39). We observe that the convergence in formula (4.39) holds for every y,

since the distribution function of the normal distribution has no discontinuity points. The

de Moivre-Laplace theorem is proved. Let y1 and y2 be two arbitrary points with y1 < y2.
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From relation (4.39) it follows that

lim
n→∞

P (y1 < Yn < y2) = lim
n→∞

[Fn (y2)− Fn (y1)] =
1√
2π

∫ y2

y1

e−y2/2dy. (4.43)

We shall rewrite the de Moivre-Laplace theorem in another form. By formula (4.38) we

have

P (y1 < Yn < y2) = P

(
y1 <

Xn − np
√
npq

< y2

)
= P (y1

√
npq + np < Xn < y2

√
npq + np)

Thus we obtain

lim
n→∞

P (y1
√
npq + np < Xn < y2

√
npq + np) =

1√
2π

∫ y2

y1

e−y2/2dy

Let

x1 = y1
√
npq + np, x2 = y2

√
npq + np (4.44)

We can write formula (4.43) in the asymptotic form

P (x1 < Xn < x2) ∼=
1√
2π

∫ y2

y1

e−y2/2dy

where y1 and y2 are determined by (4.44). We say that the random variable Xn has an

asymptotically normal distribution N(np;
√
npq). Replacing y1 and y2 with

y1 +
1

2
√
npq

and y2 −
1

2
√
npq

respectively, we get a somewhat better approximation.

Example 4.4.5 We throw a coin n = 100 times. We assign the number 1 to the appearance

of heads and the number 0 to the appearance of tails. The probability of each of these

events is equal to p = q = 0.5. What is the probability that heads will appear more than

50 times and less than 60 times?. The random variable Xn can here take on values from
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0 to 100. We have

E (Xn) = 50, D2 (Xn) = 25

P (50 < Xn < 60) = P

(
50− 50

5
<
Xn − 50

5
<

60− 50

5

)
= P

(
0 <

Xn − 50

5
< 2

)
∼=

1√
2π

∫ 1.9

0.1

e−t2/2dt

From tables of the normal distribution we obtain that the value of this integral is 0.4315.

From the de Moivre-Laplace limit theorem we obtain an analogous theorem for the sequence

of random variables

Un =
Xn

n

whereXn has the binomial distribution given by formula (4.37). Indeed, since E (Un) = p

and D2 (Un) = pq/n, we obtain the relation

Zn =
Un − p√
pq/n

=
Xn − np
√
npq

= Yn

where the random variables Yn are defined by formula (4.38). Since the sequence {Fn(y)}
of distribution functions of Yn satisfies formula (4.39), we obtain for the sequence {Fn(z)}
of the distribution functions of Zn

lim
n→∞

Fn(z) =
1√
2π

∫ z

−∞
e−z2/2dz

Similarly, for every pair of constants z1 and z2, where z1 < z2, we obtain the relation

lim
n→∞

P
(
z1 <

√
n/pq (Un − p) < z2

)
=

1√
2π

∫ z2

z1

e−z2/2dz. (4.45)

Letting

u1 = z1
√
pq/n+ p, u2 = z2

√
pq/n+ p (4.46)

We can rewrite formula (4.45) in the asymptotic form

P (u1 < Un < u2) ∼=
1√
2π

∫ z2

z1

e−z2/2dz (4.47)

where z1 and z2 are determined. We say that the random variable Un satisfying relation
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(4.47) has an asymptotically normal distribution N(p;
√
pq/n).

Let Us Sum Up

Learners, in this section we have seen that definition of Levy-Cramer theorem and also

given some theorems with Illustrations.

Check Your Progress

1. Levy’s Cramér theorem applies to:

A. Dependent random variables with finite variance.

B. Independent and identically distributed random variables with finite mean and

variance.

C. Independent and identically distributed random variables with finite mean only.

D. Dependent random variables with finite mean and variance.

2. The distribution of the sample meanXn converges to a normal distribution according

to Lévy’s Cramér theorem if:

A. The variance of Xi is zero.

B. The moment-generating function of Xi is finite for all t ∈ R.

C. The moment-generating function of Xi is finite for some interval |t| ≤ t0.

D. The random variables Xi are not identically distributed.

4.5 Lindeberg-Levy Theorem

The Bernoulli law of large numbers, proved in allows us to state only that for every

ε > 0 the probability of the inequality

∣∣∣∣Xn

n
− p

∣∣∣∣ > ε

tends to zero as n→ ∞. The limit theorem, which we have just proved, allows us (for

large n ) to compute approximately the probability that the random variable Xn/n− p
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is contained in the interval (
z1

√
p(1− p)

n
, z2

√
p(1− p)

n

)

for arbitrary z1 and z2 (z1 < z2).

Example 4.5.1 A box contains a collection of IBM cards corresponding to the workers

from some branch of industry. Of the workers 20% are minors and 80% adults. We select

one IBM card in a random way and mark the age given on this card. Before choosing

the next card, we return the first one to the box, so that the probability of selecting

the card corresponding to a minor remains 0.2 . We observe n cards in this manner.

What value should n have in order that the probability will be 0.95 that the frequency of

cards corresponding to minors lies between 0.18 and 0.22 ? Denote the frequency of the

appearance of the card corresponding to a minor by Un. We then have

E (Un) = 0.2, D2 (Un) =
0.16

n
,
√
D2 (Un) =

0.4√
n

Consider the probability

P (0.18 < Un < 0.22) = P

(
−0.02

0.4/
√
n
<
Un − 0.2

0.4/
√
n
<

0.02

0.4/
√
n

)
= P

(
−0.05

√
n <

Un − 0.2

0.4

√
n < 0.05

√
n

)
∼= 0.95

By formula (4.47) we obtain

0.95 ∼=
1√
2π

∫ 0.05
√
n

−0.05
√
n

e−z2/2dz

From tables of the normal distribution we obtain 0.05
√
n ∼= 1.96; consequently n ∼=

1537. The De Moivre-Laplace theorem is, as we shall see later, a particular case of a

more general limit theorem, namely, the Lindeberg-Lévy theorem. Consider a sequence

{Xk} (k = 1, 2, . . .) of equally distributed, independent random variables whose moment

of the second order exists. For every k denote

E (Xk) = m, D2 (Xk) = σ2 (4.48)

111



Consider the random variable Yn defined by the formula

Yn = X1 +X2 + . . .+Xn (4.49)

We have E (Yn) = nm and, by the independence of the Xn,

D2 (Yn) = nσ2

Let

Zn =
Yn −mn

σ
√
n

(4.50)

We shall prove the following theorem.

Theorem 4.5.2 IfX1, X2, . . . are independent random variables with the same distribution,

whose standard deviation σ ̸= 0 exists, then the sequence {Fn(z)} of distribution functions

of the random variables Zn, given by formulas (4.50) and (4.49), satisfies, for every z,

the equality

lim
n→∞

Fn(z) =
1√
2π

∫ z

−∞
e−z2/2dz (4.51)

Proof: Let us write equality (4.50) in the form

Zn =
1

σ
√
n

n∑
k=1

(Xk −m)

All the random variables Xk−m have the same distribution, hence the same characteristic

function ϕx(t). According to formulas (2.15) and (2.3) the characteristic function ϕz(t)

of Zn has the form

ϕz(t) =

[
ϕx

(
t

σ
√
n

)]n
(4.52)

We have assumed the existence of the first and second moments, and we have

E (Xk −m) = 0 and D2 (Xk −m) = σ2

Hence we can expand the function ϕx(t) in a neighborhood of the point t = 0 according

to the MacLaurin formula as follows:

ϕx(t) = 1− 1

2
σ2t2 + o

(
t2
)

(4.53)
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Substituting expression (4.53) in formula (4.52), we obtain

ϕz(t) =

[
1− t2

2n
+ o

(
t2

n

)]n
where for every t we have

lim
n→∞

no

(
t2

n

)
= 0 (4.54)

Let

u = − t2

2n
+ o

(
t2

n

)
We obtain

log ϕz(t) = n log(1 + u) = n

[
− t2

2n
+ o

(
t2

n

)]
= −t

2

2
+ no

(
t2

n

)

By relation (4.54) we obtain lim log ϕz(t) = −t2/2. Hence

n→∞
lim
n→∞

ϕz(t) = e−t2/2

The expression e−t2/2 is the characteristic function of a random variable with the normal

distribution. By theorem 6.6.1b we obtain relation (4.51), which proves the theorem of

Lindeberg-Lévy. et z1 and z2 be two arbitrary numbers with z1 < z2. By relation (4.51)

we obtain

(6.8.8) lim
n→∞

P (z1 < Zn < z2) = lim
n→∞

[Fn (z2)− Fn (z1)] =
1√
2π

∫ z2

z1

e−z2/2dz. (4.55)

From formula (4.50) we obtain

P (z1 < Zn < z2) = P

(
z1 <

Yn − nm

σ
√
n

< z2

)
= P

(
z1σ

√
n+ nm < Yn < z2σ

√
n+ nm

)
Thus, we obtain from formula (4.55)

lim
n→∞

P
(
z1σ

√
n+ nm < Yn < z2σ

√
n+ nm

)
=

1√
2π

∫ z2

z1

e−z2/2dz (4.56)
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Let

y1 = z1σ
√
n+ nm, y2 = z2σ

√
n+ nm (4.57)

Now we can write formula (4.56) in the asymptotic form

P (y1 < Yn < y2) ∼=
1√
2π

∫ z2

z1

e−z2/2dz

where z1 and z2 are determined by relations (4.57). Thus the random variable Yn defined

by formula (4.49) has an asymptotically normal distribution N(mn;σ
√
n). When a sum

of random variables has an asymptotically normal distribution, we say that it satisfies

the central limit theorem. Thus, for the sum Yn under consideration, the central limit

theorem holds.

Example 4.5.3 Suppose that the random variables {Xk} (k = 1, 2, . . .) are independent

and each of them has the same two-point distribution, that is, for every k we have

P (Xk = 1) = p, P (Xk = 0) = 1− p, where 0 < p < 1.

Consider the random variable Yn = X1+X2+. . .+Xn. From the fact that E (Xk) = p and

D2 (Xk) = pq, we obtain by theorem that Yn has an asymptotically normal distribution

N(np;
√
npq). Since the random variable Yn has the binomial distribution, this example

is, strictly speaking, a new proof of the de Moivre-Laplace limit. theorem, which, as we

see, is a particular case of the Lindeberg-Lévy theorem.

Example 4.5.4 The random variables Xn(n = 1, 2, . . .) are independent and each of

them has the Poisson distribution given by the formula

P (Xn = r) =
2r

r!
e−2 (r = 0, 1, 2, . . .)

Let us find the probability that the sum Y100 = X1 +X2 + . . .+X100 is greater than 190

and less than 210. The random variable Y100 has approximately the normal distribution

N(100; 10
√
2 ), since each of the random variables Xn has standard deviation σ =

√
2

and expected value m = 2. Thus we have

P (190 < Y100 < 210) = P

(
−0.707 <

Y100 − 200

10
√
2

< 0.707

)

From the normal distribution tables we find that the required probability is 0.52. From
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the Lindeberg-Levy theorem we obtain the following:

Theorem 4.5.5 Suppose that the random variables X1, X2, . . . are independent and have

the same distribution with standard deviation σ ̸= 0. Let the random variable Un be

defined by the formula

Un =
X1 +X2 + . . .+Xn

n

Furthermore, let Fn(v) be the distribution function of the random variable Vn defined as

Vn =
Un − E (Un)√

D2 (Un)

Then the sequence {Fn(v)} satisfies the relation

lim
n→∞

Fn(v) =
1√
2π

∫ v

−∞
e−v2/2dv (4.58)

Proof: We have E (Un) = m and D2 (Un) = σ2/n. Hence

Vn =
1
n

∑n
k=1Xk −m

σ/
√
n

=

∑n
k=1Xk − nm

σ
√
n

= Zn

where the random variables Zn are defined by formula (4.50). Since the sequence {Fn(z)}
satisfies relation (4.51), the sequence {Fn(v)} satisfies (4.58). Now let v1 and v2 be two

arbitrary numbers with v1 < v2.

lim
n→∞

P (v1 < Vn < v2) =
1√
2π

∫ v2

v1

e−v2/2dv (4.59)

Let

u1 =
v1σ√
n
+m, u2 =

v2σ√
n
+m (4.60)

Formula (4.59) can be written in the asymptotic form

P (u1 < Un < u2) ∼=
1√
2π

∫ v2

v1

e−v2/2dv

where v1 and v2 are determined from relations (4.60). Thus the random variable Un

has an asymptotically normal distribution N(m;σ/
√
n). In other words, the arithmetic

mean of n independent random variables with the same, although arbitrary, distribution,

where it is only assumed that the moment of the second order exists, has, for large n, an
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asymptotically normal distribution.

Example 4.5.6 The random variables X1, X2, . . . are independent and have the uniform

distribution defined by the density

f(x) =


1 for x in the interval [0, 1]

0 for x < 0 and x > 1

By formulas (3.4) and (3.5) we have

m =
1

2
, σ =

1√
12

Consider the random variable

Yn =
X1 +X2 + . . .+Xn

n

By theorem, the random variable Yn has the asymptotically normal distributionN
(
1
2
; 1/

√
12n
)
.

For n = 48 compute the probability that Yn will be smaller than 0.4 . We have 1

P (Yn < 0.4) = P

(
Yn − 1

2

1/
√
576

<
0.4− 1

2

1/
√
576

)
= P

(
Yn − 1

2
1
24

< −2.4

)
∼= Φ(−2.4) ∼= 0.0082

As we see, although the random variables Xk(k = 1, 2, . . .) have a uniform distribution

in the interval [0, 1], their arithmetic mean has, for large n, approximately a distribution

in which values that are less than m = 0.5 by more than 0.1 appear extremely rarely.

Example 4.5.7 The random variables Xr(r = 1, 2, . . .) are independent and have the

same distribution. Each of them can take on the values k = 0, 1, 2, . . . , 9 with the

probabilities P (Xr = k) = 0.1 for every k. We have

m = E (Xr) =
1

10

9∑
k=0

k = 4.5

σ2 = D2 (Xr) =
1

10

9∑
k=0

(k −m)2 =
1

10

9∑
k=0

k2 −m2 = 28.50− 20.25 = 8.25
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Thus σ = 2.87. Consider the random variable

Y100 =
X1 +X2 + . . .+X100

100

What is the probability that Y100 will exceed 5?. By theorem we know that Y100 has

approximately the normal distribution N(4.5; 2.87/
√
100.) We obtain

P (Y100 > 5) = P

(
Y100 − 4.5

0.287
>

5− 4.5

0.287

)
= P

(
Y100 − 4.5

0.287
> 1.74

)
∼= 1− Φ(1.74) ∼= 0.041

We now show by an example that the arithmetic mean of n random variables with the

same distribution may not have an asymptotically normal distribution, if their moment

of the second order does not exist.

Example 4.5.8 The random variables Xk(k = 1, 2, . . .) are independent and have the

Cauchy distribution given by formula (3.3). Since the characteristic function of Xk has,

for every k, the form

ϕk(t) = e−|t|

The distribution function of the normal distribution N(0; 1) is denoted by Φ(x). the

characteristic function ϕ(t) of the random variable

Yn =
X1 +X2 + . . .+Xn

n

takes the form

ϕ(t) = e−n|t|/n = e−|t|

Hence for an arbitrary n the random variable Yn has the Cauchy distribution. Thus Yn
does not have an asymptotically normal distribution. We notice, however, that a random

variable with a Cauchy distribution does not have a standard deviation. Let the random

variables Xk(k = 1, 2,∴) satisfy the assumptions of theorem and let E (Xk) = 0. Consider

for every n the partial sums

Sj =

j∑
k=1

Xk (j = 1, 2, . . . , n)
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Erdos and Kac[1, 2] have found the limit distributions for the sequences of random variables

{
max
1⩽j⩽n

Sj√
n

}
,

{
max
1⩽j⩽n

|Sj|√
n

}
,

{
1

n2

n∑
j=1

S2
j

}
,

{
1

n3/2

n∑
j=1

|Sj|

}

These definitions began a series of fruitful investigations concerning the limit distributions

of a large class of functionals defined on the vectors (S1, . . . , Sn), even with much more

general assumptions concerning the random variables Xk than those considered here.

In the preceding section we discussed the limit distribution of the sum of independent

random variables with the same distribution, and we established that if the variance

of these random variables exists, their sum has an asymptotically normal distribution.

However, the distribution of a sum of independent random variables may not converge

to the normal distribution if the terms do not have the same distribution, even if all the

random variables have standard deviations. We now prove the Lapunov theorem, which

gives a sufficient condition for a sum of independent random variables to have a limiting

normal distribution. Consider a sequence {Xk} of independent random variables whose

moments of the third order exist.

Let Us Sum Up

Learners, in this section we have seen that definition of Lindeberg-Levy theorem with

examples.

Check Your Progress

1. Which of the following conditions is necessary for the Lindeberg-Levy Central Limit

Theorem to hold?

A. The random variables must be identically distributed.

B. The random variables must be independent.

C. The random variables must have finite mean and variance.

D. The random variables must be uniformly distributed.

2. In the context of the Lindeberg-Levy theorem, what does the notation Zn = Sn−nµ√
nσ2

represent?

A. The sum of the random variables.

B. The standardized sum of the random variables.
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C. The variance of the sum of the random variables.

D. The mean of the sum of the random variables.

4.6 Lapunov -Theorem

Let {Xk} (k = 1, 2, . . .) be a sequence of independent random variables whose moments

of the third order exist, and let mk, σk ̸= 0, ak, and bk denote the expected value,

standard deviation, central moment of the third order, and the absolute central moment

of the third order of Xk, respectively. Furthermore, let

Bn = 3

√√√√ n∑
k=1

bk, Cn =

√√√√ n∑
k=1

σk2

If the relation

lim
n→∞

Bn

Cn

= 0

is satisfied, the sequence {Fn(z)} of the distribution functions of the random variables

Zn, defined as

Zn =

∑n
k=1 (Xk −mk)

Cn

(4.61)

satisfies, for every z, the relation

lim
n→∞

Fn(z) =
1√
2π

∫ z

−∞
e−z2/2dz (4.62)

Proof: Let

Yk =
Xk −mk

Cn

Let ϕxk
(t) denote the characteristic function of the random variable Xk − mk. From

the fact that E (Xk −mk) = 0 and that the moments σk2 and ak exist, we obtain by

formula (1.2) the expansion of ϕxk
(t) into the sum

ϕxk
(t) = 1− 1

2
σ2
kt

2 +
1

6
ak(it)

3 + o
(
akt

3
)
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By formula (1.15), the characteristic function ϕyk(t) of Yk equals

ϕyk(t) = ϕxk

(
t

Cn

)
= 1− σk

2t2

2Cn
2
+

ak
6Cn

3
(it)3 + o

(
akt

3

Cn
3

)
= 1 + uk

For every t we have

lim
n→∞

[
o

(
akt

3

C3
n

)
:
akt

3

Cn
3

]
= 0 (4.63)

Since by the Lapunov inequality we have σk < 3
√
bk, condition implies, for every t,

lim
n→∞

∣∣∣∣−σk2t22Cn
2

∣∣∣∣ ⩽ lim
n→∞

3
√
bk2

2Cn
2
t2 ⩽ lim

n→∞

1

2
· Bn

2

Cn
2
t2 = 0 (4.64)

Furthermore, we have

lim
n→∞

∣∣∣∣ ak6C3
n

(it)3
∣∣∣∣ ⩽ lim

n→∞

bk
6Cn

3
|t|3 ⩽ lim

n→∞

Bn
3|t|3

6Cn
3

= 0 (4.65)

It follows from relations (4.64) and (4.65) that

lim
n→∞

uk = 0

and the convergence is uniform with respect to k. Hence for every t there exists a

number N = N(t) such that for n > N and all k ⩽ n we have the inequality |uk| < 1
2
.

Thus
log ϕyk(t) = log (1 + uk) = uk −

1

2
u2k +

1

3
u3k − . . .

= uk −
1

2
u2k

(
1− 2

3
uk +

2

4
u2k − . . .

)
= uk −

1

2
u2kvk

We notice that

|vk| ⩽ 1 + 2
3
|uk|+ 2

4
|uk|2 + . . . < 1 + |uk|+ |uk|2 + . . .

< 1 + 1
2
+ 1

4
+ . . . = 2

Thus we can write

log ϕyk(t) = uk + ϑku
2
k (4.66)
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where ϑk = −1
2
vk, and |ϑk| < 1. Denote by ϕz(t) the characteristic function of the

random variable Zn. By formula (1.3), we have ϕz(t) =
∏n

k=1 ϕyk(t). Hence

log ϕz(t) =
n∑

k=1

log ϕyk(t)

By equality (4.66) we obtain

log ϕz(t) =
n∑

k=1

(
uk + ϑku

2
k

)
(4.67)

Next, we have
n∑

k=1

uk = −t
2

2
+

n∑
k=1

ak(it)
3

6C3
n

+
n∑

k=1

o

(
akt

3

C3
n

)
(4.68)

We notice that for every t

lim
n→∞

∣∣∣∣∣
n∑

k=1

ak(it)
3

6Cn
3

∣∣∣∣∣ ⩽ lim
n→∞

n∑
k=1

bk|t|3

6Cn
3
= lim

n→∞

Bn
3|t|3

6Cn
3

= 0. (4.69)

Hence, by formula (4.63) we obtain

lim
n→∞

n∑
k=1

o

(
akt

3

C3
n

)
= lim

n→∞

n∑
k=1

{
akt

3

6C3
n

·
[
o

(
akt

3

C3
n

)
:
akt

3

6C3
n

]}
= 0 (4.70)

From formula (4.68), because of formulas (4.69) and (4.70), it follows that for every

t we have

lim
n→∞

n∑
k=1

uk = −t
2

2
(4.71)

We now find the limit of the sum

n∑
k=1

u2k =
n∑

k=1

[
−σk2t2

2Cn
2

+
ak(it)

3

6Cn
3

+ o

(
akt

Cn
3

)]2

By the Lapunov inequality and condition we obtain

lim
n→∞

n∑
k=1

σk
4t4

4Cn
4
⩽ lim

n→∞

n∑
k=1

3
√
bk4

4Cn
4
t4 = lim

n→∞

n∑
k=1

bk
3
√
bk

4Cn
3Cn

t4
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⩽ lim
n→∞

n∑
k=1

bk
4Cn

3
t4 = lim

n→∞

Bn
3

4Cn
3
t4 = 0, (4.72)

limn→∞

∣∣∣∣∑n
k=1

[
ak(it)

3

6C3
n

]2∣∣∣∣ ⩽ limn→∞
∑n

k=1

∣∣∣akt36C3
n

∣∣∣2

⩽ lim
n→∞

n∑
k=1

bk
2t6

36Cn
6
⩽ lim

n→∞

Bn
6t6

36Cn
6
= 0 (4.73)

Taking formula (4.63) into consideration, we obtain

lim
n→∞

n∑
k=1

[
o

(
akt

3

6C3
n

)]3
= 0 (4.74)

Similarly, we obtain

limn→∞

∣∣∣∑n−1
k=1

∑n
j=k+1

σ2
kaji

3t5

6Cn
5

∣∣∣ = 0

limn→∞

∣∣∣∑n−1
k=1

∑n
j=k+1

t2σ2
k

C2
n
o
(

ajt
3

C3
n

)∣∣∣ = 0

limn→∞

∣∣∣∑n−1
k=1

∑n
j=k+1

aki
3t3

3C3
n
o
(

ajt
3

C3
n

)∣∣∣ = 0

(4.75)

From formulas (4.72) to (4.75) and the fact that for every k ⩽ n we have |ϑk| < 1, we

obtain

lim
n→∞

n∑
k=1

ϑku
2
k = 0 (4.76)

Using (4.71) and (4.76) we obtain from formula (4.67) that for every t the relation

lim
n→∞

log ϕz(t) = −t
2

2

holds. Hence

lim
n→∞

ϕx(t) = e−t2/2

By the last relation and by theorem, we obtain formula (4.62), which proves the

Lapunov theorem. For another proof of Lapunov’s theorem. The Lapunov theorem

only gives a sufficient condition for relation (4.62). We shall now present without

proof the theorem of LindebergFeller, giving a necessary and sufficient condition. T
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Let Us Sum Up

Learners, in this section we have seen that definition of Lapunov theorem and also

given theorems and Illustrations.

Check Your Progress

1. Lapinov’s theorem provides conditions under which:

A. The sum of random variables converges to a Poisson distribution.

B. The sum of random variables converges to a normal distribution.

C. The sum of random variables converges to a uniform distribution.

D. The sum of random variables does not converge to any distribution.

2. In Lapinov’s theorem, the moment-generating function M(t) is bounded by:

A. eKt2

B. eKt

C. eKt2 where K is a constant.

D. et

4.7 Lindeberg-Feller Theorem

Let {Xk} (k = 1, 2, . . .) be a sequence of independent random variables whose variances

exist, and let Gk(x),mk, and σk ̸= 0 denote, respectively, the distribution function,

the expected value and the standard deviation of the random variable Xk, and let

Fn(z) denote the distribution function of the standardized random variable Zn given

by formula (4.61). Then the relations

lim
n→∞

max
1≤k≤n

σk
Cn

= 0, lim
n→∞

Fn(z) =
1√
2π

∫ z

−∞
e−z2/2dz

hold if and only if, for every ε > 0,

lim
n→∞

1

C2
n

n∑
k=1

∫
|x−mk|>εCn

(x−mk)
2 dGk(x) = 0 (6.9.20)
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If all the Xk are of the continuous type and gk(x) is the density of Xk, then condition

(4.77) takes the form

lim
n→∞

1

Cn
2

n∑
k=1

∫
|x−mk|>εCn

(x−mk)
2 gk(x)dx = 0 (4.78)

If, however, all the Xk are of the discrete type with jump points xkl and jumps pkl(l =

1, 2, . . .), formula (4.77) takes the form

lim
n→∞

1

C2
n

n∑
k=1

∑
|xkl−mk|>εCn

(xkl −mk)
2 pkl = 0 (4.79)

From the theorem of Lindeberg-Feller follows this theorem.

Theorem 4.7.1 Let {Xk} (k = 1, 2, . . .) be a sequence of independent, uniformly bounded

random variables, that is, there exists a constant a > 0 such that for every k

P (|Xk| ⩽ a) = 1 (4.80)

and suppose that D2 (Xk) ̸= 0 for every k. Then a necessary and sufficient condition for

relation (4.62) to hold is

lim
n→∞

C2
n = ∞ (4.81)

Proof: Suppose that (4.81) is satisfied. From formula (4.80) it follows that the random

variables Xk −mk are uniformly bounded. Hence for every ε > 0 we can find an N such

that for n > N we have

P (|Xk −mk| < εCn; k = 1, 2, . . . , n) = 1

Formula (4.77) follows immediately. Suppose now that (4.62) holds, and (4.81) does

not. Then there exists a C <∞ such that limCn
2 = C2. From the last relation, and from

formulas (4.62) and (4.61), it follows that
∑∞

k=1 (Xk −mk ) has the normal distribution

N(0;C). Let

U = (X2 −m2) + (X3 −m3) + . . .

The random variables X1 − m1 and U are independent, and their sum has a normal

distribution. By the Cramér theorem both X1 − m1 and U have normal distributions.

However, by hypothesis (4.80), the random variable X1 − m1 does not have a normal
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distribution. Hence (4.61) is not satisfied, and the theorem is proved. In particular, it

follows from this theorem that if the random variable Yn =
∑n

k=1Xk has the generalized

binomial distribution, that is, if the probability function of Xk is given by the formulas

P (Xk = 1) = pk, P (Xk = 0) = qk = 1−pk(k = 1, 2, . . .), then the divergence of the series

Σpkqk is a necessary and sufficient condition for Yk to have the asymptotically normal

distribution

N

 n∑
k=1

pk;

√√√√ n∑
k=1

pkqk

)

Example 4.7.2 At a construction site there are lots of bricks from five different factories.

Judging by previous experience, the quality of bricks from different factories differs and

the fraction of defective items is not the same for all lots. The production of the i th factory

is characterized by the number pi, giving the fraction of good bricks. The values of pi are

the following:

p1 = 0.95, p2 = 0.90, p3 = 0.98, p4 = 0.92, p5 = 0.96

Since the lots are very large, we assume it is certain that the defectiveness of a lot produced

by the i th factory is exactly 1− pi(i = 1, . . . , 5). The probability of choosing a good brick

from a given lot is thus pi. We select 20 bricks at random from each lot. Since each

lot contains many bricks, and the drawing of 20 bricks does not change practically the

probability of selecting a good brick, we may assume that this probability is constant

while drawing bricks and hence equals pi. After checking the quality of all 100 selected

bricks, it turned out that 11 of them were defective. This result created some doubts as to

whether the assumptions about the numbers pi were not too optimistic. The mathematical

model of this example is the following. We have 100 independent random variables Xk

and each of them can take on two values; 1 when a good brick is selected and 0 when a

defective one is selected. These random variables are divided into five groups. The i th

group consists of those random variables which take on the value 1 with probability pi.

Let us form the random variable

Y100 = X1 + . . .+X20 +X21 + . . .+X40 +X41 + . . .+X60

+X61 + . . .+X80 +X81 + . . .+X100
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This is a random variable with a generalized binomial distribution. We have

E (Y100) =20 · 0.95 + 20 · 0.90 + 20 · 0.98 + 20 · 0.92 + 20 · 0.96 = 94.20

D2 (Y100) =20 · 0.05 · 0.95 + 20 · 0.10 · 0.90 + 20 · 0.02 · 0.98

+ 20 · 0.08 · 0.92 + 20 · 0.04 · 0.96 = 5.382

σ =2.32

Before we apply the central limit theorem, we must examine the result obtained above

which gives the divergence of the series Σpkqk as a necessary and sufficient condition for

the convergence of the generalized binomial distribution to the normal distribution. If,

however, this series is convergent, then pkqk → 0 as k → ∞. Hence min (pk; 1− pk) → 0.

Thus the sequence {pk} must contain a subsequence convergent either to zero or to one.

In the language of this example, this would mean that the series Σpkqk would converge if

the bricks produced contained very often (theoretically an infinite number of times) either

only good or only defective items. However, many years of practice in the production of

bricks show that this is not true and thus the series Σpkqk is not convergent. Thus we can

apply the central limit theorem. According to this theorem, the random variable Y100 has

approximately the normal distribution N(94.2; 2.32). Thus we have

P (Y100 ⩽ 89) = P

(
Y100 − 94.2

2.32
⩽ −2.25

)
∼= Φ(−2.25)

From tables of the normal distribution we find that Φ(−2.25) is rather small, about 0.01

. In such cases we are inclined to accept the conclusion that our assumptions about

the pi were too optimistic. In this example we have touched on questions which will be

systematically and exhaustively considered. This example was given to show that the

central limit theorem is not only a beautiful mathematical achievement but can also

be applied to the solution of many practical problems. We see how important a role

the normal distribution plays in probability theory and its applications. However, the

theorem which we now present shows that under rather general assumptions a sequence

of distribution function of sums of independent random variables may converge to a limit

distribution function different from the normal. Consider a sequence {Yn} (n = 1, 2, . . .)

of random variables, where for every n, Yn is the sum of n independent random variables
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Xnk (k = 1, 2, . . . , n),

Yn =
n∑

k=1

Xnk (4.82)

These sums are more general than the sums considered in this section, where we have

Xnk = Xk (n = 1, 2, . . . ; k = 1, 2, . . . , n)

We restrict ourselves to the case when, for every n, the random variables Xnk(k =

1, 2, . . . , n) have the same distribution 1 given by the probability function

P (Xnk = xl) = pnl (l = 1, 2, . . . , r) (4.83)

where

0 < pnl < 1,
r∑

l=1

pnl = 1

and r(r ⩾ 2) is some natural number.

Theorem 4.7.3 Let Yn be defined by formula (4.82) and let Xnk(k = 1, 2, . . . , n) be

independent and have the distribution defined by formula (4.83). Let Fn(z) be the

distribution function of the random cariable Zn defined as

Zn =
Yn − E (Yn)√

D2 (Yn)

Then: I. If

lim
n→∞

n (pn1pn2 + pn1pn3 + . . .+ pn,r−1pnr) = ∞ (4.84)

1 The case when the Xnk do not have the same distribution for all k was considered by

Kubik. the sequence {Fn(z)} satisfies the relation

lim
n→∞

Fn(z) =
1√
2π

∫ z

−∞
e−z2/2dz

II. If the limits (finite or infinite)

lim
n→∞

pnl and lim
n→∞

npnl (l = 1, 2, . . . , r)
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exist, and the relation

lim
n→∞

n (pn1pn2 + pn1pn3 + . . .+ pn,r−1pnr) = λ (4.85)

where λ > 0, holds, then the sequence {Fn(z)} converges to the distribution function of a

random variable which is a linear combination of s(1 ⩽ s ⩽ r − 1) independent random

variables, each having a Poisson distribution. We notice that in theorem we have dealt

with sums of the form (4.82). Indeed, let Yn be the number of successes in n trials in

the Bernoulli scheme and let the probability of success pn be a function of n satisfying the

relation

lim
n→∞

npn = λ (4.86)

where λ > 0. Then we can write

Yn =
n∑

k=1

Xnk

where Xnk is the number of successes (equal to 0 or 1) in the k th trial (k = 1, 2, . . . , n);

thus the Xnk are independent and have the same distribution given by the formulas

P (Xnk = 1) = pn1 = pn, P (Xnk = 0) = pn2 = 1− pn

and we have r = 2. From formula (4.86) follow the relations

lim
n→∞

pn1 = 0, lim
n→∞

pn2 = 1

lim
n→∞

npn1 = λ, lim
n→∞

npn2 = ∞, lim
n→∞

npn1pn2 = λ

where λ > 0. All the assumptions of assertion II of theorem are satisfied; thus the sequence

{Fn(z)}, where Fn(z) is the distribution function of the random variable

Zn =
Yn − npn√
npn (1− pn)

converges as n → ∞ to the distribution function of a Poisson random variable with the

parameter λ. This is the integral Poisson theorem, whereas theorem is the local Poisson

theorem.
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4.8 Let Us Sum Up

Learners, in this section we have seen that definition of Lindeberg-Feller theorem and

also given examples.

Check Your Progress

1. In the Lindeberg-Feller theorem, the Lindeberg condition involves:

A. The boundedness of the moment-generating function.

B. The convergence of the sample variance to zero.

C. The contribution of large deviations to the variance of the sum.

D. The identically distributed nature of the random variables.

2. The sample variance S2
n in the Lindeberg-Feller theorem is given by:

A. 1
n

∑n
i=1(Xi − E[Xi])

2

B. 1
n

∑n
i=1 σ

2
i

C. 1
n

∑n
i=1(Xi − µi)

2

D. 1
n

∑n
i=1 Var(Xi)

4.9 Unit Summary

The fourth unit content on limit theorems are stochastic convergence, Bernoulli’s

law of large numbers, the convergence of a sequence of distribution functions, The

Levy-Cramer theorem, De Moivre-Laplace theorem, Lindeberg-Levy theorem and Lapunov

theorem.

Glossary

1. The Xn
p−→ X is converges in probability p.

2. The Xn
d−→ X is diverges in probability X.

3. If Xn
a.s.−−→ X is converges almost surely X.

4. Fn(x) → F (x) uniformly for all x ∈ R.
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5. Fn(x) → F (x) at every point x ∈ R.

6. Fn(x) → F (x) at all continuity points of F .

Self-Assessment Questions

Short Answers: (5 Marks)

1. Prove that the sequence {Fn(x)} converges to the distribution function F (x) if

and only if the relation

lim
n→∞

Fn(x) = F (x)

holds for all points x in a set S which is everywhere dense in the interval ( −∞,

+∞).

2. Show that if the sequence of characteristic functions {ϕn(t)} converges to the

characteristic function ϕ(t) and tn → t0, then ϕn (tn) → ϕ (t0).

3. Prove that ifX1, X2, . . . are independent random variables with the same distribution,

whose standard deviation σ ̸= 0 exists, then the sequence {Fn(z)} of distribution

functions of the random variables Zn, given by formulas and satisfies, for every

z, the equality

lim
n→∞

Fn(z) =
1√
2π

∫ z

−∞
e−z2/2dz

Long Answers: (8 Marks)

1. Let Yn =
∑kn

k=1Xnk , where the random variablesXnk ( k = 1, . . . , kn) are independent

for each n and have the probability functions given by the formula P (Xnk = xnkl) =

pnkl, where
∑n

l=1 pnkl = 1(n = 1, 2, . . ., k = 1, 2, . . . , kn, l = 1, 2, . . . , r, r ⩾ 2 ).

Assume that (a) the Xnk are asymptotically constant, that is, for every ε > 0 we

have

limn→∞max1≤k≤kn P (|Xnk −mnk| > ε) = 0, where mnk is the median of Xnk,

(b) limn→∞max1≤k≤kn znkl = limn→∞min1≤k≤kn znkl = xl(l = 1, . . . , r),

where znkl = xnk,l+1 − xnkl. Find the class of all possible limit distribution

functions of sequences {Fn(y)} of distribution functions of Yn − An for arbitrary

sequences of constants {An}.
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2. Let us denote by mk
(n) the moment of order k of the random variable Xn with

the distribution function Fn(x). Prove that if, for k = 1, 2, . . ., the finite limits

mk = lim
n→∞

m
(n)
k

exist and, moreover, these limits uniquely determine a distribution function F (x)

the sequence {Fn(x)} converges to F (x).

3. Let the random variablesX1, X2, X3, . . . satisfy all the assumptions of the Lindeberg-Levy

theorem, and suppose that the moment E |Xi|3 exists. Then the relation

|Fn(z)− Φ(z)| ⩽ c
E |Xi|3

σ3

1√
n

holds, where c is a constant.

4. The random variablesXi(i = 1, 2, . . .) are independent and have the same probability

distribution, given by the formulas

P (Xi = 0) = P (Xi = 3) = P (Xi = 7) = P (Xi = 12) =
1

4
.

Check whether for this sequence the local limit theorem of Gnedenko holds.

5. The random variable X has the Poisson distribution with the parameter λ. Let

ur = P (X = r)(r = 0, 1, . . .), t = (r − λ)/
√
λ and

vr =
1√
2πλ

exp

(
−t

2

2

)
wr = vr

(
1− t

2
√
λ̄
+

t2

6
√
λ̄

)

Applying Stirling’s formula, show that if λ→ ∞ and r → ∞ in such a way that t

remains bounded in absolute value, then for any ε > 0

lim
λ→∞

[
λ1−ε (ur − vr)

]
= 0,

lim
λ→∞

[
λ3/2−ε (ur − wr)

]
= 0.
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Exercises

1. The random variable X has the Poisson distribution with the parameter λ. Let

ur = P (X = r)(r = 0, 1, . . .), t = (r − λ)/
√
λ and

vr =
1√
2πλ

exp

(
−t

2

2

)
wr = vr

(
1− t

2
√
λ̄
+

t2

6
√
λ̄

)

Applying Stirling’s formula, show that if λ→ ∞ and r → ∞ in such a way that t

remains bounded in absolute value, then for any ε > 0

lim
λ→∞

[
λ1−ε (ur − vr)

]
= 0,

lim
λ→∞

[
λ3/2−ε (ur − wr)

]
= 0.

2. The distribution functions F (x) and G(x) are said to be of the same type if there

exist constants a > 0 and b such that for every x

G(x) = F (ax+ b).

Prove that if the sequence of distribution functions {Fn(x)} converges as n→ ∞
to a nondegenerate distribution function F (x), and if Fn (anx+ bn) converges to

a nondegenerate distribution function G(x), then G(x) is of the same type as

F (x).

3. Prove that {Xk} (k = 1, 2, 3, . . .) be a sequence of independent and identically

distributed random variables. If, for some constants a and An(n = 1, 2, 3, . . .),

the relation

lim
n→∞

P

(
1

a
√
n

n∑
k=1

Xk − An < z

)
=

1√
2π

∫ z

−∞
exp

(
−z

2

2

)
dz

holds for any z, then the variance σ2 of Xk exists. If this is so, then a = σ and An

may be chosen to equal
√
n
σ
E (Xli )
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Answers to Check Your Progress

Session (Modulo) 4.1

1. A. Convergence in probability implies convergence in distribution.

2. B. Xn
p−→ X

Session (Modulo) 4.2

1. C. Fn(x) → F (x) at all continuity points of F .

2. C. In distribution to F

Session (Modulo) 4.3

1. A. f must be continuous on [a, b] and g must be of bounded variation on [a, b].

2. A.
∫ b

a
f(x) dg(x) = f(b)g(b)− f(a)g(a)−

∫ b

a
g(x) df(x)

Session (Modulo) 4.4

1. B. Independent and identically distributed random variables with finite mean and

variance.

2. C. The moment-generating function of Xi is finite for some interval |t| ≤ t0.

Session (Modulo) 4.5

1. B. The random variables must be independent.

2. B. The standardized sum of the random variables.

Session (Modulo) 4.6

1. B. The sum of random variables converges to a normal distribution.

2. C. eKt2 where K is a constant.

Session (Modulo) 4.7

1. C. The contribution of large deviations to the variance of the sum.

2. B. 1
n

∑n
i=1 σ

2
i
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Unit 5

Markov Chain

Objective

This course aims to teach the students about Markov chain with homogeneous Markov

chains and transition matrix, Ergodic theorem and random variables forming a homogeneous

Markov chain.

5.1 Introduction of Markov Chain

In this section we have mainly considered independent random events and independent

random variables. In fact, in the applications of probability theory we can often assume

that the random events or random variables under consideration are independent.

However, there are many problems in physics, engineering, and other areas of applications

of probability theory where the assumption of independence is not satisfied, not even

approximately. Therefore, the investigation of dependent random events and dependent

random variables is an important problem in probability theory. But to abandon the

assumption of independence creates serious complications in the reasoning and in the

proofs. It is a great achievement of Markov that in the investigation of dependent

events he distinguished a scheme of experiments, now called the scheme of events

forming a Markov chain, which can be considered as the simplest generalization of

the scheme of independent trials. Markov’s investigations have become the starting

point for the development of a new and important branch of probability theory, the

theory of Markov stochastic processes.
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Let Us Sum Up

Learners, in this section we have seen that introduction of Markov chains with example.

Check Your Progress

1. In a Markov chain, the transition matrix P represents:

A. The probability of transitioning between different states in one step.

B. The probability distribution of the initial state.

C. The probability of transitioning from the current state to the next state over multiple

steps.

D. The probability distribution of the stationary state.

2. A Markov chain is said to be irreducible if:

A. It is possible to return to the starting state in a finite number of steps.

B. There is a positive probability of reaching any state from any other state.

C. The chain has a stationary distribution.

D. The chain is periodic.

5.2 Homogeneous Markov Chains

We assume that all the conditional probabilities appearing in this and the following

chapters are defined. Imagine that we are given a sequence of experiments and as

a result of each experiment there can be one and only one event from a finite or

countable set of pairwise exclusive events E1, E2, E3, . . . We call these events states.

When the event Ej occurs we say that the system passes into the state Ej. We

use the symbol E(n)
j to denote that at the nth trial the system passes into the state

Ej; the symbol E(0)
j denotes that the initial state was Ej. Next we denote by p

(n)
ij

the conditional probability that at the nth trial the system passes into the state Ej,

provided that after the (n− 1)-st trial it was in the state Ej, that is,

p(n)ıȷ = P
(
E

(n)
j | E(n−1)

i

)
Definition 5.2.1 We say that a sequence of trials forms a Markov chain if for any i, j, n =

1, 2, 3, . . . the equalities
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p
(n)
ij = P

(
E

(n)
j | E(n−1)

i

)
(5.1)

= P
(
E

(n)
j | E(n−1)

i E
(n−2)
in−2

. . . E
(1)
i1
E

(0)
i0

)
are satisfied for arbitrary E(n−2)

in−2
, . . . , E

(1)
i1
, E

(0)
i0

.

Definition 5.2.2 We say that a sequence of trials forms a homogeneous Markov chain, if

for i, j = 1, 2, 3, . . . the probability p(n)ij is independent of n, that is,

p
(n)
ij = pıȷ (n = 1, 2, . . .) (5.2)

The probability pij is called the transition probability from the state Ei to the state

E, in one trial. We also use the time terminology, that is, we consider the trials as

performed at every unit of.time and, instead of saying that at the nth trial the system

passes from the state Ei to the state Ej, we say that this transition is performed at the

moment t = n. Besides this, we shall assume that at the initial moment, that is, at

t = 0, the system may be in the state Ei with probability P (Ei). In this terminology

pij is the transition probability from the state Ei to the state Ej in a unit of time. By

formulas (5.1), (5.2), and (1.7) we obtain the following formula for the probability of

the product of states ( Ei0Ei1 . . . Ein) in n successive trials of a homogeneous Markov

chain:

P (Ei0Ei1 . . . Ein) = P (Ei0)P (Ei1 | Ei0) . . . P
(
Ein | Ein−1

)
(5.3)

= P (Ei0) pi0i1 . . . pin−1in .

The reader will notice an essential difference between the last formula and formula

(1.7). It follows from formula (5.3) that the probability of every product of states is

given if we know all the transition probabilities pij and all the probabilities P (Eı0) of

the initial states.

Let Us Sum Up

Learners, in this section we have seen that the definition of homogeneous Markov

chains.
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Check Your Progress

1. What characterizes a Markov chain as homogeneous?

A. The transition probabilities are constant over time.

B. The transition probabilities vary with time but are stationary.

C. The chain has a finite number of states.

D. The chain exhibits periodic behavior.

2. For a homogeneous Markov chain with transition matrix P , what does the matrix

P n denote?

A. The matrix of state probabilities after n steps.

B. The matrix of initial state distributions after n steps.

C. The matrix of transition probabilities after n steps.

D. The matrix of cumulative transition probabilities up to n steps.

5.3 Transition Matrix

The matrix with the transition probabilities pij as elements is called the transition

matrix. This matrix is denoted by M1,

M1 =



p11 p12 p13 . . .

p21 p22 p23 . . .

p31 p32 p33 . . .

· · · · · · · · ·


We observe that all the elements pıj, being probabilities, are non-negative. Suppose

that the system is in the state Ei. The event that as a result of the experiment the

system either remains in the state Ei or passes to any of the states Ej, where i ̸= j, is

the sure event. Since the events Ej are pairwise exclusive, for i = 1, 2, 3, . . ., we obtain

the formula

P

[(∑
j

Ej

)
| Ei

]
=
∑
j

pij = 1 (5.4)

Thus the sum of the terms in each row of the matrix M1 equals one. However, the sum

of the terms in a column need not be one.

Example 5.3.1 Consider a sequence of trials in the Bernoulli scheme. Here we have two
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states E1 and E2, and in each experiment

p11 = p21 = p, p12 = p22 = q

Thus the transition matrix is of the form

M1 =

 p q

p q


It is easy to verify that in an independent sequence of trials the rows of the transition

matrix are always identical.

Example 5.3.2 Here we consider the random walk with absorbing barriers. It is a model

of certain phenomena which often appear in physics. A particle may be at one of the

points 1, 2, 3, . . . , s on the x-axis. It will remain forever, with probability one, at the point

x = 1 if it arrives there at some moment t. The same is true for the point x = s. The

points 1 and s are called absorbing barriers. If at the moment t the particle comes to the

point x = i, where 2 ⩽ i ⩽ s− 1, then during the next unit of time the particle will pass

to the point i + 1 with probability p and to the point i − 1 with probability q = 1 − p.

Here we have a homogeneous Markov chain with s states, where the state Ei occurs if the

particle has the coordinate x = i. In fact, the probability of passing from the state Ei to

the state Ej at the moment t does not depend on the previous path of the particle and

does not depend on t but only on the state at the moment t. The transition probabilities

are

p11 = pss = 1,

and for 2 ⩽ i ⩽ s− 1

pij =


p for j = i+ 1

q = 1− p for j = i− 1

0 otherwise

139



Thus the transition matrix has the form

M1 =



1 0 0 0 . . . 0 0 0

q 0 p 0 . . . 0 0 0

0 q 0 p . . . 0 0 0

. . . . . . . . . . . . . . . . .

0 0 0 0 . . . q 0 p

0 0 0 0 . . . 0 0 1


We now give an example due to Malecot of the application of Markov chains to genetics.

Example 5.3.3 In the genetics based on Mendel’s laws we assume that inherited characteristics

depend on the genes. Genes always appear in pairs. In the simplest case, which we

consider here, every gene may be of one of two forms, A or a. If both genes of the

organism being considered are of type A, we say that the organism is of genotype AA;

if both genes are of type a we say that it is of genotype aa; finally, if one gene is of type

A and the other of type a we say that the organism is of genotype Aa. Furthermore,

we assume that the reproductive cells, or gametes, have only one gene; thus the gametes

of an organism of genotype AA or aa have the gene A or a, respectively, whereas the

gametes of an organism of genotype Aa may have the gene A or a with equal probability.

An offspring receives one gene from each parent under the conditions of the Bernoulli

scheme. This should be understood as follows: consider the set of all genes of all organisms

belonging to the generation of parents of a given offspring as the population from which

two genes are drawn at randomunder the conditions of the Bernoulli scheme. Similarly,

the genotype structure of N offspring is a result of 2N such drawings from the set of genes

under consideration. Suppose, now, that the population under consideration consists of

N elements in each generation. This may be achieved by an appropriate selection of

organisms in each generation. Thus we have 2N genes in each generation. If in some

generation i(0 ⩽ i ⩽ 2N) of the genes are of the form A, we say that the generation is

in the state Ei. From the assumed reproduction scheme it follows that we have here a

homogeneous Markov chain with 2N + 1 possible states: E0, E1, . . . E2N . The probability

of passing from the state Ei in some generation to the state Ej in the next generation is

given by the formula

pij =

(
2N

j

)(
i

2N

)j (
1− i

2N

)2N−j
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We observe that the states E0 and E2,V are the absorbing barriers. Indeed, if in some

generation the population is in one of these states it will remain there forever; if, for

instance, all the organisms are of the genotype AA, no offspring can have the gene a.

Example 5.3.4 Here we consider a model of a random walk without absorbing barriers,

having a countable number of states. The set of states is the set of all non-negative integers

and the transition probabilities are given by the formulas

pij =


p p11 = q = 1− p,

q for i = 1, 2, 3, . . . ; j = i+ 1,

0 for the remaining pairs (i, j).

The number 0 is a reflecting barrier. The transition matrix M1 is of the form

M1 =



q p 0 0 0 0 . . .

q 0 p 0 0 0 . . .

0 q 0 p 0 0 . . .

· · · · · · · · · · · · . . .


Example 5.3.5 Let us now return to the Polya scheme. We use the notation. We have

two states, state E1 consists of drawing a white ball as state E2 consists of drawing a black

ball, and the initial probabilities are p1 b/N and p2 = 1 − p1 = c/N , respectively. The

probability of passing from t state E1 in the first drawing to the state E1 in the second

drawing is (b+. (N + s). However, the probability of choosing a white ball in the third

drawi if in the second drawing a white ball was drawn, equals (b + 2s)/(N + 2 provided

that in the first drawing we obtained the state E1, and it equals (b+(N +2s)) provided in

the first drawing we obtained the state E2. Thus t sequence of trials in the Polya scheme

is not a Markov chain. We can, however, obtain a Markov chain in the Pólya scheme if

we define t states in another way, namely, if we agree to say that after n drawings the

syste is in the state Ei(i = 0, 1, 2, . . . , n), if i is the number of white balls obtained n

drawings. Then at the (n + 1) st trial the system may remain in the state Ei pass to the

state Ei+1, according to whether in the (n + 1) st trial a black or white ball was drawn.

These transition probabilities depend only on the state the system after the nth trial and

are independent of the results of the first n trials. However, these probabilities depend on

the number of trials and we ha here a nonhomogeneous Markov chain with the transition
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probabilities p(n−)
ij given by the formula

p
(n+1)
ij =


c+(n−i)s
N+ns

for j = i

b+is
N+ns

for j ̸= i+ 1

0 for j ̸= i, i+ 1

We denote by pij(n) the probability of passing in n trials from t state Ei to the state Ej in

a homogeneous Markov chain. Sometimes call it the probability of transition in n steps.

We show how to compu the probabilities pij(n) from the probabilities pij. Let us start by

compt ing pij(2). We observe that the event A of passing from the state Ei the state Ej in

two trials is the union of the pairwise exclusive events where Ak occurs if and only if the

system passes from the state Ei to Ek the first step and from Ek to Ej in the second step.

Thus for every pi (i, j) we have

pij(2) =
∑
k

pikpkj (5.5)

where the summation is extended over all possible states.

Let Us Sum Up

Learners, in this section we have seen that definition of transition matrix also given

theorems and Illustrations.

Check Your Progress

1.Which of the following is true for a transition matrix P?

A. Each entry pij can be negative.

B. Each row of P must sum to 1.

C. Each column of P must sum to 1.

D. The matrix P is not required to be square.

2. The Chapman-Kolmogorov equation is used to:

A. Calculate the stationary distribution of the Markov chain.

B. Relate the n-step and m-step transition probabilities.
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C. Find the eigenvalues of the transition matrix.

D. Compute the long-term behavior of the Markov chain.

5.4 The Ergodic Theorem

In an analogous way we find the formulas

pij(n) =
∑
k

pik(m)pkj(n−m) (5.6)

where n = 2, 3, 4, . . . and m is an integer satisfying the condition 1 ⩽ m < n. Equation

(5.6) plays a basic role in the theory of homogeneous Markov chains and is called the

Markov equation. The matrix whose elements are the transition probabilities pij(n) is

called the matrix of transition in n steps and is denoted by the symbol Mn. It is easy

to find the relation between the matrices Mn and M1. Let us first find the relation

between the matrices M1 and M2. From formula it follows that the element of matrix

M2 at the intersection of the i th row and j th column is the sum of products of the

elements of the i th row by the j th column of M1. Thus, according to the rule of

multiplication of matrices, we obtain

M2 = M2
1

By induction and formula (5.6), we have

Mn = M1
n (5.7)

We start this section with a classification of states of Markov chains; this will allow us

to interpret the assumptions of the ergodic theorem. This classification was introduced

by Kolmogorov.

Definition 5.4.1 The state Ei is called unintrinsic if there exists a state Ej and an integer

k such that pij(k) > 0 and pji(m) = 0 for m = 1, 2, 3, . . .

Definition 5.4.2 The state Ei is called intrinsic if, for every state Ej, the existence of

an integer kj such that pij (kj) > 0 implies the existence of an integer mi such that

pj2 (mi) > 0.
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Definition 5.4.3 The intrinsic state Ei is called periodic if there exists an integer d > 1

such that pi2(n) = 0 for n not a multiple of d. We observe, however, that we cannot pass

from the state E1 to Es, nor can we pass from E−
s to E1, despite the fact that both states

are intrinsic. This remark gives rise to the following definition.

Definition 5.4.4 The set W of intrinsic states forms one class if for every pair of intrinsic

states Ei and Ej of W there exists an integer mij such that pij (mij) > 0. We now discuss

the ergodic theorem. This theorem tells how the probabilities pij(n) behave as n → ∞.

In other words, it explains what influence the initial state Ei has on the probability

pij(n) after a large number of steps n. We know that a condition for the convergence

pij(n) → pj for a homogeneous Markov chain, where the limits pj are independent of i,

that is, are independent of the initial state Ei. The theorem given here does not give a

complete solution to this problem; in particular, it does not consider Markov chains with

a countable number of states.

Theorem 5.4.5 Let M1 = [pij] be the matrix of one step transition probabilities in a

homogeneous Markov chain with a finite number of states E1, . . . , Es. If there exists an

integer r such that the terms pij(r) of the matrix Mr satisfy the relation

min
1⩽i⩽s

pij(r) = δ > 0 (5.8)

in s1 (s1 ⩾ 1) columns, then the equalities

lim
n→∞

pij(n) = pj (j = 1, 2, . . . , s) (5.9)

are satisfied, and pj ⩾ δ for those j for which relation (5.8) holds. Moreover,
∑

j pj = 1

and

|pij(n)− pj| ⩽ (1− s1δ)
n/r−1 . (5.10)

As we see, one of the assumptions of this theorem requires that the elements pij(r) of at

least one column of the matrix Mr be positive. The above theorem is a modification of the

theorem of Markov, which requires that for some integer r all the elements of the matrix

Mr be positive. Then in the assertion of the theorem we have pj > 0(j = 1, 2, . . . , s).

Theorem is called the ergodic theorem and the limit probabilities pj are called the ergodic

probabilities. The explanation of this name is given at the end of this section.

Example 5.4.6 Let us return to example and suppose, for simplicity, that s = 3. Then
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we have. Let us compute

M1 =


1 0 0

q 0 p

0 0 1



M2 = M1
2 =


1 0 0

q 0 p

0 0 1

 ·


1 0 0

q 0 p

0 0 1

 =


1 0 0

q 0 p

0 0 1

 = M1

In general, we have

Mn = M1

Thus the assumptions of the ergodic theorem are not satisfied. There does not exist an

r such that the matrix Mr has at least one column of positive elements pij(r). It is

obvious that the assertion of above theorem is not satisfied either, since p11(n) = 1 so that

limn→∞ p11(n) = 1, while limn→∞ p21(n) = q and limn→∞ p31(n) = 0. The irregularity of

this Markov chain is caused by the existence of two intrinsic states E1 and E3 such that

passage from one to the other is impossible; thus the set of states does not form one class.

Example 5.4.7 Consider a homogeneous Markov chain with four states E1, E2, E3, E4

and the transition matrix We obtain here

M1 =



0 0 1
2

1
2

0 0 1
2

1
2

1
2

1
2

0 0

1
2

1
2

0 0



M2 =



1
2

1
2

0 0

1
2

1
2

0 0

0 0 1
2

1
2

0 0 1
2

1
2


Generally, for k = 1, 2, 3, . . ., we have

M2k+1 = M1, M2k = M2
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Thus neither the assumption nor the assertion of theorem is satisfied. The reader will

notice the periodicity of this Markov chain. All the states are intrinsic; but they are

periodic, so that, for instance, the system may return from the state E1 to the state E1

only in an even number of steps. This periodicity causes the observed irregularity, as a

result of which the ergodic theorem is not satisfied.

Example 5.4.8 Let us return to example and suppose that the number of states is 3 and

the matrix M1 has the form

M1 =


q p 0

q 0 p

0 q p


Then

M2 =


q2 + pq qp p2

q2 2qp p2

q2 pq qp+ p2


Thus the assumptions of theorem are satisfied. We observe that all three states are

intrinsic, nonperiodic, and form one class. We show later how to compute the ergodic

probabilities.

Example 5.4.9 Let us modify example, such a way that the transition matrix takes the

form

M1 =


1 0 0

q 0 p

0 q p


In this example, the stateE1 is an absorbing barrier, and the stateE3 is a reflecting barrier.

We have Thus the assumptions of theorem are satisfied. It is easy to verify that the state

E1 is intrinsic and not periodic and the remaining two states are unintrinsic. Later we

show that the limit probabilities p2 and p3 are zero. These examples suggest, and it can

be shown that this is true, that if in a homogeneous Markov chain with a finite number

of states all the intrinsic states are nonperiodic and form one class, then the assumptions

of theorem are satisfied. However, the possibility that some states are unintrinsic is not

excluded. But if all the states are intrinsic, nonperiodic, and form one class, then there

exists an r such that all the elements pij(r) of the matrix Mr are positive, hence greater

than some δ > 0, since there are only a finite number of them. Let us mention here that
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Kaucky and Konêcny have given necessary and sufficient conditions for the ergodicity of

homogeneous Markov chains; their conditions are expressed in terms of eigenvalues of the

matrix M1. We now give the proof of theorem.

Proof: For v = 1, 2, 3, . . ., denote

bj(v) = min
1⩽i⩽s

pij(v), Bj(v) = max
1⩽i⩽s

pij(v) (5.11)

Considering formula (5.6) for v = 1, 2, 3, . . ., we obtain

bj(v + 1) = min
1⩽i⩽s

pij(v + 1) = min
1⩽i⩽s

s∑
k=1

pikpkj(v)

⩾ min
1⩽i⩽s

s∑
k=1

pikbj(v) = bj(v)

Hence

bj(v + 1) ⩾ bj(v) (5.12)

Similarly,

Bj(v + 1) ⩽ Bj(v) (5.13)

From formulas (5.12) and (5.13) we obtain

bj(1) ⩽ bj(2) ⩽ . . . ⩽ Bj(2) ⩽ Bj(1) (5.14)

Let r and
∑+

k and
∑−

k denote, respectively, the sums extended over those k for which

pik(r) ⩾ pmk(r) and pik(r) < pmk(r). Then

+∑
k

[pik(r)− pmk(r)] +
−∑
k

[pik(r)− pmk(r)] = 0 (5.15)

Suppose that n > r. Consider the difference

Bj(n)− bj(n) = max
1⩽i⩽s

pij(n)− min
1⩽m⩽s

pmj(n)

= max
1⩽i⩽s

s∑
k=1

pik(r)pkj(n− r)− min
1⩽m⩽s

s∑
k=1

pmk(r)pkj(n− r)

= max
1⩽i,m⩽s

s∑
k=1

[pik(r)− pmk(r)] pkj(n− r)
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⩽ max1⩽i,m⩽s

{∑+
k [pik(r)− pmk(r)]Bj(n− r) +

∑−
k [pik(r)− pmk(r)] bj(n− r)

}
. Hence

by formula (5.15) and (5.16)

Bj(n)− bj(n) ⩽ max
1⩽i,m⩽s

+∑
k

[pik(r)− pmk(r)] [Bj(n− r)− bj(n− r)]

= [Bj(n− r)− bj(n− r)] max
1⩽i,m⩽s

+∑
k

[pik(r)− pmk(r)]

Suppose that relation (5.8) holds for w terms of the sum
∑+

k . Obviously, w ⩽ s1, where

s1 is the number of columns for which (5.8) is satisfied. Thus

−
+∑
k

pmk(r) ⩽ −wδ

Next, since for s1 − w terms of the sum
∑

k − relation (5.8) is also satisfied, we have

+∑
k

pik(r) + (s1 − w) δ ⩽ 1

Finally,
+∑
k

[pik(r)− pmk(r)] ⩽ 1− (s1 − w) δ − wδ = 1− s1δ (5.16)

From formulas (5.15) and (5.16) follows the inequality

Bj(n)− bj(n) ⩽ (1− s1δ) [Bj(n− r)− bj(n− r)]

Similarly, for n > 2r

Bj(n)− bj(n) ⩽ (1− s1δ)
2 [Bj(n− 2r)− bj(n− 2r)]

Repeating this procedure [n/r]1 times, we obtain

Bj(n)− bj(n) ⩽ (1− s1δ)
[n/r]

{
Bj

(
n−

[n
r

]
r
)
− bj

(
n−

[n
r

]
r
)}

(5.17)
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We observe that from (5.17) and from the fact that δ > 0, s1 ⩾ 1 follows the inequality

0 ⩽ 1− s1δ < 1

Thus from formula (5.14) follows the existence of the limits of {bj(n)} and {Bj(n)}, and

limits are equal. Therefore,

lim
n→∞

max
1⩽i⩽s

pij(n) = lim
n→∞

min
1⩽i⩽s

pij(n) = pj (5.18)

which proves formula (5.9). Next, it is obvious that for those j for which relation (5.8)

is satisfied, we have pj ⩾ δ. The equality
∑

j pj = 1

is also obvious. It remains to prove relation (5.10). In fact, by formulas (5.14) and

(5.15) we obtain

|pij(n)− pj| ⩽ Bj(n)− bj(n) ⩽ (1− s1δ)
n/r−1

which completes the proof of theorem. We now show how to calculate the ergodic probabilities

pj if they are known to exist. By formula (5.6) we obtain

pij(n) =
s∑

k=1

pik(n− 1)pkj

Thus, if the ergodic probabilities pj exist, then after passage to the limit as n → ∞ on

both sides of the last inequality we have

pj =
s∑

k=1

pkpkj (j = 1, 2, . . . , s) (5.19)

1 The symbol [A] denotes here the greatest integer not exceeding A. From these equations

and from the relation
s∑

j=1

pj = 1

we can determine the probabilities pj.

Example 5.4.10 Let us return to example and calculate the ergodic probabilities pj.
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Formula (5.19) gives us three linear equations

p1 = p1q + p2q

p2 = p1p+ p3q

p3 = p2p+ p3p

Hence
p2 =

p

q
p1

p3 =

(
p

q

)2

p1

Since p1 + p2 + p3 = 1, we obtain

p1

[
1 +

p

q
+

(
p

q

)2
]
= 1

Thus if p = q = 1
2
, then p1 = p2 = p3 = 1

3
, and thus in the limit each state has the same

probability. If p ̸= q, then

pj =
1− (p/q)

1− (p/q)3

(
p

q

)j−1

(j = 1, 2, 3)

If p > q, then the probabilities pj increase with the number j of the state; if p < q they

decrease. These results agree with our intuition. Thus if p/q = 2 we have and if p/q = 1
2

p1 =
1

7
, p2 =

2

7
, p3 =

4

7
,

p1 =
4

7
, p2 =

2

7
, p3 =

1

7

We observe that all three ergodic probabilities are positive. This is because all states are

intrinsic. In a Markov chain with a countable number of states ergodic probabilities of

intrinsic states may be equal zero.
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Example 5.4.11 Let us calculate the limit probabilities. By formula (5.19) we have

p1 = p1 + p2q

p2 = p3q

p3 = (p2 + p3) p

Since p1 + p2 + p3 = 1, we obtain p1 = 1, p2 = p3 = 0. As has been mentioned, this

is because the states E2 and E3 are unintrinsic. The notion of ergodicity and conditions

for the validity of the ergodic theorem for nonhomogeneous Markov chains can be found

Kolmogorov, Sarymsakov, and Hajnal. We now find the relations between the ergodic

probabilities and the absolute probabilities in a homogeneous Markov chain. Let us

compute the absolute probability of the event that after n steps the system passes into

the state Ej. Denote this probability by cj(n). We have

cj(n) =
∑
k

P (Ek) pkj(n) (5.20)

=
∑
k

ck(n− 1)pkj

where P (Ek) is the initial probability of the state Ek.

Definition 5.4.12 A homogeneous Markov chain for which the equalities

P (Ej) = cj(1) (j = 1, 2, . . .)

are satisfied is called a stationary chain and the probabilities cj(n) are called stationary

absolute probabilities. We observe that from the last equalities and from formula

(5.20), for j = 1, 2, . . . and n = 1, 2, 3, . . ., it follows that

cj(1) = cj(2) = . . . = cj(n) = cj

Thus from formula (5.20) we obtain the equalities

cj =
∑
k:

ckpkj (j = 1, 2, . . .) (5.21)

Suppose that the number of states is finite and equal to s. Suppose that the assumptions

of theorem are satisfied; thus the ergodic probabilities pi exist. By comparing formulas
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is easy to verify that cj = pj(j = 1, 2, 3, . . . , s). Thus; if the initial probabilities P (Ej)

are equal, for j = 1, . . . , s, to the ergodic probabilities pj, then cj(n) = pj will be

constant for n = 1, 2, 3, . . .; hence the chain will be stationary. We shall have an

equilibrium in the sense of the invariance of absolute probabilities. This explains the

name "ergodic theorem." However, we observe that for an arbitrary Markov chain with

a finite number of states we have the following theorem.

Theorem 5.4.13 The limits of the absolute probabilities

lim
n→∞

cj(n) = cj (j = 1, 2, . . . , s) (5.22)

for a homogenous Markov chain with a finite number of states exist independently of

the initial distribution if and only if the ergodic probabilities pj exist. We then have

cj = pj(j = 1, 2, . . . , s).

Let Us Sum Up

Learners, in this section we have seen that definition of Ergodic theorem and also

given theorems and Illustrations.

Check Your Progress

1. In the context of the ergodic theorem, what does it mean if a dynamical system is

ergodic?

A. Every invariant set under the system’s evolution has measure zero or one.

B. Every function is invariant under the system’s evolution.

C. The system exhibits chaotic behavior.

D. The system has a periodic orbit.

2. For a system satisfying the ergodic theorem, if X is a measure-preserving dynamical

system and f is an integrable function, what does the ergodic theorem state about the

function f?

A. The time average of f converges to its space average almost everywhere.

B. The time average of f converges to the mean of the function over time.

C. The space average of f is constant over time.

D. The function f must be periodic.
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5.5 Random Variables Forming a Homogeneous Markov

Chain

Suppose that (5.22) is satisfied and cj does not depend on the initial distribution. Then

we may put P (Ei) = 1 and P (Ej) = 0(i ̸= j). Hence by formula (5.20) we have

cj(n) = pi,(n)

Therefore, by (5.22)

pj = lim
n→∞

pij(n) = cj (i, j = 1, 2, . . . , s)

Conversely, suppose that the ergodic probabilities pj exist. Then by formula (5.20) for

an arbitrary initial distribution we obtain

lim
n→∞

cj(n) = lim
n→∞

s∑
k=1

P (Ek) pkj(n) = pj

s∑
k=1

P (Ek) = pj

The considerations of the previous sections may be applied to random variables. Let

{Xn} (n = 0, 1, 2, . . .) be random variables that can take on the values xi(i = 1, 2, 3, . . .).

The values xi correspond to the states Ei previously discussed. We now give definitions

analogous to the definitions.

Definition 5.5.1 We say that the sequence {Xn} (n = 0, 1, 2, . . .) of random variables

with possible values xi(i = 1, 2, 3, . . .) forms a Markov chain if for i, j, n = 1, 2, 3, . . . the

equalities.

p
(n)
ij = P (Xn = xj | Xn−1 = xi) (5.23)

=P
(
Xn = xj | Xn−1 = xi, Xn−2 = xin−2 , . . . , X1 = xi1 , X0 = xi0

)
are satisfied for arbitrary xin−2 , . . . , xi1 , xi0.

Definition 5.5.2 We say that the sequence {Xn} (n = 0, 1, 2, . . .) of random variables

with possible values xi(i = 1, 2, 3, . . .), forms a homogeneous Markov chain if for i, j, n =
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1, 2, 3, . . . theconditional probabilities p(n)ij are independent of n, that is,

p
(n)
ij = pij (5.24)

In the terminology of random variables the probability pij(n) of transition from the state

Ei to Ej in n steps is the probability that Xn = xj provided X0 = xi, which means

pij(n) = P (Xn = xj | X0 = xi)

Formula (5.6) takes the form

pij(n) =
∑
k

P (Xm = xk | X0 = xi)P (Xn = xj | Xm = xk) (5.23)

where 1 ⩽ m < n. The absolute probabilities cj(n) expressed by formula (5.20) take the

form

cj(n) = P (Xn = xj) =
∑
k

P (X0 = xk)P (Xn = xj | X0 = xk) (7.5.4)

Definition 5.5.3 A sequence {Xn} (n = 0, 1, 2, 3, . . .) of random variables with possible

values xi(i = 1, 2, . . .) forming a homogeneous Markov chain is stationary if for j =

1, 2, 3, . . .

cj(0) = P (X0 = xj) = P (X1 = xj) = cj(1) = cj

If follows from the last equality that for n = 0, 1, 2, . . . and j = 1, 2, 3, . . .

P (Xn = xj) = cj

Thus a stationary sequence of random variables is a sequence of identically distributed

random variables. It is also easy to formulate the classification of states and the

theorems proved previously in the terminology of random variables. We leave this

to the reader. It should be stated that the theory of limit distributions for random

variables forming a homogeneous Markov chain is less advanced than the same theory

for independent random variables. Conditions for the validity of the central limit

theorem for Markov chains with three states were found by Markov, and for chains

with an arbitrary finite number of states by Romanovsky Fréchet, and Onicescu and
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Mihoc. Doeblin showed that for a certain class of Markov chains with a countable

number of states, the question of limit theorems can be reduced to the analogous

question for independent random variables. For chains with an arbitrary number of

states, some results were obtained by Doeblin, Doob, Dynkin, and Chung [2, 3]. A

quite advanced, result, which is essentially a generalization of the Lindeberg-Lévy

theorem to a large class of random variables forming a homogeneous Markov chain,

was recently obtained by Nagayev. The local limit theorem for Markov chains with a

finite number of states was given by Kolmogorov. Sirazhdinov obtained some results

concerning the rate of convergence to the limit distribution in the local and integral

limit theorems for Markov chains with a finite number of states. In the paper quoted,

Nagayev obtained the local central limit theorem for Markov chains with a countable

number of states and estimated the rate of convergence to the normal distribution.

Some theorems concerning the laws of large numbers for random variables forming

a Markov chain can be found in the book by Doo and the paper of Chung. Breiman

recently obtained a general result in this field. We merely state here without proof the

law of large numbers and the central limit theorem for random variables forming a

homogeneous Markov chain with a finite number of states.

Theorem 5.5.4 Let {Xk} (k = 0, 1, 2, . . .) be a stationary sequence of random variables

forming a homogeneous Markov chain with a finite number of states. If all the intrinsic

states are nonperiodic and form one class, then

P

[
lim
n→∞

1

n+ 1

n∑
k=0

Xk = E (X0)

]
= 1 (5.25)

Thus if the assumptions of this theorem are satisfied, then the sequence {Xk} obeys the

strong law of large numbers. Compare this theorem with the theorem of Kolmogorov.

Example 5.5.5 Consider a stationary sequence of random variables Xkc(k = 0, 1, 2, . . . )

which can take on only two values x1 and x2 and form a homogeneous Markov chain. The

number x1 is the state E1 and the number x2 is the state E2. Suppose that the transition

matrix is

M1 =

 p11 p12

p21 p22


where 0 < p12 < 1, 0 < p21 < 1. The assumptions of theorem are satisfied for r = 1. Both

states are intrinsic and nonperiodic and they form one class. By formula (5.19) and the
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relation p1 + p2 = 1 we obtain the ergodic probabilities

p1 =
p21

p12 + p21
, p2 =

p12
p12 + p21

(5.26)

and 0 < p1 < 1, 0 < p2 < 1. By the assumption that {Xk} is stationary we have

P (Xk = x1) = p1 and P (Xk = x2) = p2(k = 0, 1, 2, . . .). By theorem the relation

lim
n=∞

1

n+ 1

n∑
k=0

Xk =
p21

p12 + p21
x1 +

p12
p12 + p21

x2 (5.27)

holds with probability one. In particular, let x1 = 1 and x2 = 0. Then the event

(
∑n

k=0Xk = m) occurs if m times among the possible n + 1 times the system is in the

state E1. Relation (7.5.7) states that, with probability one, the average number of times

that the system is in the state E1 tends to p21/ (p12 + p21). If we treat the appearance

of the value x1 = 1 as a success, we see that the number of successes in a sequence of

trials forming a homogeneous Markov chain obeys the strong law of large numbers. The

weak law of large numbers for this example was obtained by Markov. We now present the

central limit theorem. Let

Yn =
n∑

k=0

[Xk − E (Xk)]

Theorem 5.5.6 Let {Xk} (k = 0, 1, 2, . . .) be a sequence of random variables forming a

homogeneous Markov chain with a finite number of states. If all the intrinsic states are

nonperiodic and form one class, and if the variance D2 (Yn), when the sequence {Xk} is

stationary, satisfies the relation

lim
n→∞

D2 (Yn)

n+ 1
= σ2 > 0 (5.28)

then for an arbitrary initial distribution of the random variable X0, the relation

lim
n→∞

P

(
Yn

σ
√
n+ 1

< y

)
=

1√
2π

∫ y

−∞
e−y2/2dy (5.29)

is satisfied.

Example 5.5.7 Let us return to example, in which the sequence {Xk} is stationary, and

set x1 = 1, x2 = 0. Let Zk = Xk − E (Xk). Since {Xk} is stationary, we have E (Xk) =

p1(k = 0, 1, 2, . . .). Let us find D2 (Yn) and verify that relation (7.5.8) is satisfied. Since
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the sequence {Xk} is stationary, we obtain

D2 (Yn) =
n∑

k=0

D2 (Zk) + 2
n−1∑
k=0

n∑
m=k+1

E (ZkZm) (5.30)

= (n+ 1)p1p2 + 2
n−1∑
k=0

n∑
m=k+1

E (ZkZm)

To find E (ZkZm), we observe that the random variable ZkZn can take on the following

values with the respective probabilities:

P
[
ZkZm = (1− p1)

2] =P (Xk = 1)P (Xm = 1 | Xkc = 1) = p1p11(m− k)

P [ZkZm = (1− p1) (−p1)] =P (Xk = 1)P (Xm = 0 | Xk = 1)

+ P (Xk = 0)P (Xm = 1 | Xk = 0)

=p1p12(m− k) + p2p21(m− k)

P
(
ZkZm = p1

2
)
=P (Xk = 0)P (Xm = 0 | Xk = 0) = p2p22(m− k).

Hence, after some simple computations,

E (ZkZm) =p1p2
2p11(ṁ− k)− p1

2p2p12(m− k) (5.31)

− p1p
2
2p21(m− k) + p21p2p22(m− k)

=p1p2 [p11(m− k)− p21(m− k)] = p1p2 (p11 − p21)
m−k

Therefore, using formula (5.15) and letting δ = p11 − p21, we obtain

D2 (Yn) = p1p2
{
n+ 1 + 2

[
nδ + (n− 1)δ2 + . . .+ δn

]}
= p1p2

[
n+ 1 + 2

(
n∑

j=1

δj +
n−1∑
j=1

δj + . . .+ δ

)]

= p1p2

[
n+ 1 +

2δn

1− δ
− 2δ2 (1− δn)

(1− δ)2

]
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5.6 Let Us Sum Up

Learners, in this section we have seen that the defintions of random variables forming

a homogeneous Markov chain and also given theorems and applications.

Check Your Progress

1. Which of the following best defines a sequence of random variables {Xn} as forming

a homogeneous Markov chain?

A. The probability distribution ofXn+1 depends only onXn and not onXn−1, Xn−2, . . . , X0.

B. The probability distribution of Xn+1 depends on Xn and Xn−1.

C. The sequence {Xn} is independent and identically distributed.

D. The probability distribution of Xn is uniform across all n.

2. In a homogeneous Markov chain, what does it mean if the transition probabilities

are time-invariant?

A. The transition probabilities vary with time but are stationary.

B. The probability distribution of the chain at each time step is the same.

C. The chain is always in the same state.

D. The transition probabilities from state i to state j do not change over time.

5.7 Unit Summary

The fifth unit content on homogeneous Markov chains, transition matrix, Ergodic

theorem, random variables forming a homogeneous Markov Chain.

Glossary

1. The p(n)ıȷ is The probability pij is called the transition probability from the state

Ei to the state E, in one trial.

2. The M1 is a matrix with the transition probabilities pij as elements is called the

transition matrix. This matrix is denoted by M1.
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3. If p(n+1)
ij is pij(n) the probability of passing in n trials from t state Ei to the state

Ej in a homogeneous Markov chain.

4. The cj(n) the absolute probability of the event that after n steps the system passes

into the state Ej.

Self-Assessment Questions

Short Answers: (5 Marks)

1. If the transition matrix of a homogeneous Markov chain with four states has the

form

M1 =



1
4

1
2

0 1
4

1
5

0 1
3

7
15

0 2
3

1
3

0

1
4

1
4

1
4

1
4


(a) Calculate all states.

(b) Check whether the ergodic theorem holds.

(c) If so, find the ergodic probabilities.

2. If the transition matrix of a homogeneous Markov chain with four states has the

form

M1 =



1
3

2
3

0 0

3
4

1
8

1
8

0

0 0 1
2

1
2

0 0 1
3

2
3


(a) Classify all states.

(b) Check whether the ergodic theorem holds.

(c) If so, find the ergodic probabilities.

3. (a) Prove that for an arbitrary homogeneous Markov chain with a finite number

of states the limits exist.

lim
n→∞

1

n

n∑
k=1

pij(k) = qij
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4. Let Kij(n) denote the probability of passing from the state Ei to the state Ej for

the first time on the nth step and let

Lij =
∞∑
n=1

Kij(n), Rij =
∞∑
n=1

nKij(n)

The expression Rjj is called the mean recurrence time of the state Ej. The state

Ej is called recurrent if Ljj = 1, transient if Ljj < 1. A recurrent state with Rjj =

∞ is called a null state. A recurrent state which is neither a null state nor periodic

is called an ergodic state. Show that (a) Kij(n) = pij(n) −Kij(1)pjj(n − 1) −
. . .−Kij(n− 1)pjj.

5. Let Kij(n) denote the probability of passing from the state Ei to the state Ej for

the first time on the nth step and let

Lij =
∞∑
n=1

Kij(n), Rij =
∞∑
n=1

nKij(n)

The expression Rjj is called the mean recurrence time of the state Ej. The state

Ej is called recurrent if Ljj = 1, transient if Ljj < 1. A recurrent state with

Rjj = ∞ is called a null state. A recurrent state which is neither a null state nor

periodic is called an ergodic state. Show that homogeneous Markov chain with

a finite number of states, the state Ej is recurrent if and only if it is intrinsic.

Long Answers: (8 Marks)

1. Let us consider a homogeneous Markov chain with a countable number of states

with the transition matrix

M1 =



p1 1− p1 0 0 0 . . .

p2 0 1− p2 0 0 . . .

p3 0 0 1− p3 0 . . .

· · · · · · · · · · · · · · · · · ·


Show that if

∑∞
j=1 ṗj <∞, then all states are transient and if

∑∞
j=1 pj = ∞, then

all states are recurrent. Deduce that there may exist states which are at the same

time transient and intrinsic.
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2. Let us denote by Ωij the probability that the system will return an infinite number

of times to the state Ej if at the initial moment it was in the state Ei. Prove that

(a) if Lij = 1, then Ωij = 1. (b) for a set of intrinsic states which form one class

either all Ωij < 1 or all Ωij = 1.

3. Prove that in a set of intrinsic states which form one class, either all Lij < 1 or

all Lij = 1.

4. Let M1 = [pij] denote the transition matrix of a homogeneous Markov chain with

a countable number of states E1, E2, E3, . . .

I. If all states are recurrent, non-null and nonperiodic and form one class, then

for i, j = 1, 2, . . .,

lim
n→∞

pij(n) = pj = 1/Rjj

where p1+ p2+ . . . = 1, pj > 0, and pj = cj, where cj is the stationary probability.

II. IfEj is a transient or a recurrent null state, then for all iwe have limn→∞ pij(n) =

0. III. If Ej is a recurrent, non-null state and has period d > 1, then prove that

lim
n→∞

pij(n) = d/Rjj

5. Let us consider a homogeneous Markov chain with a countable number of states

and with the transition matrix

M1 =



1
2

1
2

0 0 0 0 · · ·
2
3

0 1
3

0 0 0 · · ·
3
4

0 0 1
4

0 0 · · ·
4
5

0 0 0 1
5

0 · · ·

· · · · · · · · · · · · · · · · · ·


Show that limn→∞ pij(n) = pj = e−1/j(i, j,= 1, 2, . . .).

Exercises

1. Prove that

D2 (Yn)

n+ 1
= p1p2

(
1 + 2

δ

1− δ
· n

n+ 1

)
− p1p2
n+ 1

· 2δ
2 (1− δn)

(1− δ)2
.
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2. The transition matrix of a homogeneous Markov chain with four states has the

form

M1 =



1
4

1
2

0 1
4

1
5

0 1
3

7
15

0 2
3

1
3

0

1
4

1
4

1
4

1
4


(a) Classify all states. (b) Check whether the ergodic theorem holds. (c) If so,

find the ergodic probabilities.

3. The transition matrix of a homogeneous Markov chain with four states has the

form

M1 =



1
3

2
3

0 0

3
4

1
8

1
8

0

0 0 1
2

1
2

0 0 1
3

2
3


(a) Classify all states. (b) Check whether the ergodic theorem holds. (c) If so,

find the ergodic probabilities.

Answers to check your progress

Session (Modulo) 5.1

1. A. The probability of transitioning between different states in one step.

2. B. There is a positive probability of reaching any state from any other state.

Session (Modulo) 5.2

1. A. The transition probabilities are constant over time.

2. C. The matrix of transition probabilities after n steps.

Session (Modulo) 5.3

1. B. Each row of P must sum to 1.

2. B. Relate the n-step and m-step transition probabilities.

Session (Modulo) 5.4

1. A. Every invariant set under the system’s evolution has measure zero or one.

2. A. The time average of f converges to its space average almost everywhere.

Session (Modulo) 5.5

162



1. A. The probability distribution ofXn+1 depends only onXn and not onXn−1, Xn−2, . . . , X0.

2. D. The transition probabilities from state i to state j do not change over time.
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